10,940 research outputs found

    Image registration with sparse approximations in parametric dictionaries

    Get PDF
    We examine in this paper the problem of image registration from the new perspective where images are given by sparse approximations in parametric dictionaries of geometric functions. We propose a registration algorithm that looks for an estimate of the global transformation between sparse images by examining the set of relative geometrical transformations between the respective features. We propose a theoretical analysis of our registration algorithm and we derive performance guarantees based on two novel important properties of redundant dictionaries, namely the robust linear independence and the transformation inconsistency. We propose several illustrations and insights about the importance of these dictionary properties and show that common properties such as coherence or restricted isometry property fail to provide sufficient information in registration problems. We finally show with illustrative experiments on simple visual objects and handwritten digits images that our algorithm outperforms baseline competitor methods in terms of transformation-invariant distance computation and classification

    Sparse recovery on Euclidean Jordan algebras

    Get PDF
    This paper is concerned with the problem of sparse recovery on Euclidean Jordan algebra (SREJA), which includes the sparse signal recovery problem and the low-rank symmetric matrix recovery problem as special cases. We introduce the notions of restricted isometry property (RIP), null space property (NSP), and s-goodness for linear transformations in s-SREJA, all of which provide sufficient conditions for s-sparse recovery via the nuclear norm minimization on Euclidean Jordan algebra. Moreover, we show that both the s-goodness and the NSP are necessary and sufficient conditions for exact s-sparse recovery via the nuclear norm minimization on Euclidean Jordan algebra. Applying these characteristic properties, we establish the exact and stable recovery results for solving SREJA problems via nuclear norm minimization

    Regularity Properties for Sparse Regression

    Full text link
    Statistical and machine learning theory has developed several conditions ensuring that popular estimators such as the Lasso or the Dantzig selector perform well in high-dimensional sparse regression, including the restricted eigenvalue, compatibility, and â„“q\ell_q sensitivity properties. However, some of the central aspects of these conditions are not well understood. For instance, it is unknown if these conditions can be checked efficiently on any given data set. This is problematic, because they are at the core of the theory of sparse regression. Here we provide a rigorous proof that these conditions are NP-hard to check. This shows that the conditions are computationally infeasible to verify, and raises some questions about their practical applications. However, by taking an average-case perspective instead of the worst-case view of NP-hardness, we show that a particular condition, â„“q\ell_q sensitivity, has certain desirable properties. This condition is weaker and more general than the others. We show that it holds with high probability in models where the parent population is well behaved, and that it is robust to certain data processing steps. These results are desirable, as they provide guidance about when the condition, and more generally the theory of sparse regression, may be relevant in the analysis of high-dimensional correlated observational data.Comment: Manuscript shortened and more motivation added. To appear in Communications in Mathematics and Statistic

    Rotating Rindler-AdS Space

    Full text link
    If the Hamiltonian of a quantum field theory is taken to be a timelike isometry, the vacuum state remains empty for all time. We search for such stationary vacua in anti-de Sitter space. By considering conjugacy classes of the Lorentz group, we find interesting one-parameter families of stationary vacua in three-dimensional anti-de Sitter space. In particular, there exists a family of rotating Rindler vacua, labeled by the rotation parameter beta, which are related to the usual Rindler vacuum by non-trivial Bogolubov transformations. Rotating Rindler-AdS space possesses not only an observer-dependent event horizon but even an observer-dependent ergosphere. We also find rotating vacua in global AdS provided a certain region of spacetime is excluded.Comment: 14 pages, LaTe
    • …
    corecore