55,244 research outputs found

    A novel Group Key Transfer Protocol

    Get PDF
    Group key transfer protocols depend on a mutually trusted key generation center (KGC) to transport the group key to all group members secretly. This approach requires that a trusted sever be set up, and it incurs communication overhead costs. In addition, the existing group key transfer protocols based on secret sharing all use threshold schemes that need to compute a -degree interpolating polynomial to encrypt and decrypt the secret group key, then it increases the computational complexity of system. In this paper, we first present a novel group key transfer protocol without an online KGC, which is based on DH key agreement and a perfect linear secret sharing scheme (LSSS). The confidentiality of the group key transfer phase of this protocol is information theoretically secure, which is ensured by this LSSS. Furthermore, this protocol can resist potential attacks and also reduce the overhead of system implementation. Goals and security threats of our proposed group key transfer protocol will be analyzed in detail

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Coded Cooperative Data Exchange for a Secret Key

    Full text link
    We consider a coded cooperative data exchange problem with the goal of generating a secret key. Specifically, we investigate the number of public transmissions required for a set of clients to agree on a secret key with probability one, subject to the constraint that it remains private from an eavesdropper. Although the problems are closely related, we prove that secret key generation with fewest number of linear transmissions is NP-hard, while it is known that the analogous problem in traditional cooperative data exchange can be solved in polynomial time. In doing this, we completely characterize the best possible performance of linear coding schemes, and also prove that linear codes can be strictly suboptimal. Finally, we extend the single-key results to characterize the minimum number of public transmissions required to generate a desired integer number of statistically independent secret keys.Comment: Full version of a paper that appeared at ISIT 2014. 19 pages, 2 figure
    • …
    corecore