1,642,631 research outputs found

    Multi-disformal invariance of nonlinear primordial perturbations

    Get PDF
    We study disformal transformations of the metric in the cosmological context. We first consider the disformal transformation generated by a scalar field ϕ\phi and show that the curvature and tensor perturbations on the uniform ϕ\phi slicing, on which the scalar field is homogeneous, are non-linearly invariant under the disformal transformation. Then we discuss the transformation properties of the evolution equations for the curvature and tensor perturbations at full non-linear order in the context of spatial gradient expansion as well as at linear order. In particular, we show that the transformation can be described in two typically different ways: one that clearly shows the physical invariance and the other that shows an apparent change of the causal structure. Finally we consider a new type of disformal transformation in which a multi-component scalar field comes into play, which we call a "multi-disformal transformation". We show that the curvature and tensor perturbations are invariant at linear order, and also at non-linear order provided that the system has reached the adiabatic limit.Comment: 8 page

    Generalized Transformation Optics of Linear Materials

    Full text link
    We continue the development of a manifestly 4-dimensional, completely covariant, approach to transformation optics in linear dielectric materials begun in a previous paper. This approach, which generalizes the Plebanski based approach, is systematically applicable for all transformations and all general linear materials. Importantly, it enables useful applications such as arbitrary relative motion, transformations from arbitrary non-vacuum initial dielectric media, and arbitrary space-times. This approach is demonstrated for a resulting material that moves with uniform linear velocity. The inverse problem of this covariant approach is shown to generalize Gordon's "optical metric".Comment: 16 pages, 2 figures. This version: minor clarification to tex

    Piecewise linear transformation in diffusive flux discretization

    Full text link
    To ensure the discrete maximum principle or solution positivity in finite volume schemes, diffusive flux is sometimes discretized as a conical combination of finite differences. Such a combination may be impossible to construct along material discontinuities using only cell concentration values. This is often resolved by introducing auxiliary node, edge, or face concentration values that are explicitly interpolated from the surrounding cell concentrations. We propose to discretize the diffusive flux after applying a local piecewise linear coordinate transformation that effectively removes the discontinuities. The resulting scheme does not need any auxiliary concentrations and is therefore remarkably simpler, while being second-order accurate under the assumption that the structure of the domain is locally layered.Comment: 11 pages, 1 figures, preprint submitted to Journal of Computational Physic

    Reversible implementation of a disrete linear transformation

    Get PDF
    Discrete linear transformations form important steps in processing information. Many such transformations are injective and therefore are prime candidates for a physically reversible implementation into hardware. We present here the first steps towards a reversible digital implementation of two different integer transformations on four inputs: The Haar wavelet and the H.264 transform

    On linearization of super sine-Gordon equation

    Get PDF
    Two sets of super Riccati equations are presented which result in two linear problems of super sine-Gordon equation. The linear problems are then shown to be related to each other by a super gauge transformation and to the super B\"{a}cklund transformation of the equation.Comment: 9 Page

    On Measure Transformed Canonical Correlation Analysis

    Full text link
    In this paper linear canonical correlation analysis (LCCA) is generalized by applying a structured transform to the joint probability distribution of the considered pair of random vectors, i.e., a transformation of the joint probability measure defined on their joint observation space. This framework, called measure transformed canonical correlation analysis (MTCCA), applies LCCA to the data after transformation of the joint probability measure. We show that judicious choice of the transform leads to a modified canonical correlation analysis, which, in contrast to LCCA, is capable of detecting non-linear relationships between the considered pair of random vectors. Unlike kernel canonical correlation analysis, where the transformation is applied to the random vectors, in MTCCA the transformation is applied to their joint probability distribution. This results in performance advantages and reduced implementation complexity. The proposed approach is illustrated for graphical model selection in simulated data having non-linear dependencies, and for measuring long-term associations between companies traded in the NASDAQ and NYSE stock markets

    Shear-Transformation-Zone Theory of Linear Glassy Dynamics

    Full text link
    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both structural glasses and soft glassy materials such as colloidal suspensions. We find that the frequency dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α\alpha peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.Comment: 13 pages, 4 figures; expanded explanations, added re
    corecore