
Reversible implementation
of a discrete integer linear transformation

Alexis De Vos
Vakgroep elektronika en informatiesystemen

Imec and Universiteit Gent
Sint Pietersnieuwstraat 41

B - 9000 Gent
Belgium

Email: alex@elis.ugent.be

Stéphane Burignat
Vakgroep elektronika en informatiesystemen

Universiteit Gent
Sint Pietersnieuwstraat 41

B - 9000 Gent
Belgium

Email: research@burignat.eu

Michael Kirkedal Thomsen∗

Dept. of Computer Science
University of Copenhagen

Universitetsparken 1
DK - 2100 Copenhagen

Denmark
Email: michael@kirkedal.dk

Abstract—Discrete linear transformations form important
steps in processing information. Many such transformations are
injective and therefore are prime candidates for a physically
reversible implementation into hardware. We present here the
first steps towards a reversible digital implementation of two
different integer transformations on four inputs: The Haar
wavelet and the H.264 transform.

I. I NTRODUCTION

Transforms are today an important tool used for analysis
and compression of audio signals, images, video, and much
more. A common property of most of these transforms is the
existence of an inverse transform; meaning that they in theory
are lossless, reversible functions.

Today, one of the most known and most used transforms is
the Fourier transform that in its fast, discrete implementation
is widely used ine.g.digital signal processing. For the Fourier
transform there exists an inverse transform and it has therefore
been researched in a reversible context. Most known perhapsis
Shor’s factorization algorithm [1] that makes use of a quantum
Fourier transform, but the Fourier transform has also been
implemented in classical reversible CMOS logic circuits [2].
A problem with the Fourier transform is the use of non-
integer and complex values that in numerical computations
result in rounding of fixed-point or floating-point numbers and
thus a lossy coding. Approximation algorithms can solve the
loss of information but time consuming multiplications are
unavoidable.

Today, much focus has moved from the Fourier transform
to wavelettransforms [3], [4] that are faster than the Fourier
transform1 and allow mapping integers to integers [5]. For
implementation in reversible computing thelifting scheme[6]
is a powerful tool and its use in wavelets was quickly ac-
knowledged [7]. The lifting scheme decomposes an injective
computation into a series ofreversible updates[8].

In this work, as an example, we focus on the wavelet
used for theH.264 video coding standardas described by

∗At the time of writing visiting Vakgroep elektronika en informatiesyste-
men, Universiteit Gent.

1Wavelet transforms have generally a computational time ofO(n) com-
pared to the Fourier transformsO(n logn), wheren is the size of the data.

Malvar et al. [9]. This coding, used in the AVC video format,
is designed such that it only requires simple integer arithmetic.
A reversible design using the lifting scheme is proposed and
the schematic for the physical implementation is presented. In
order to outline the advantages and disadvantages of the H.264
wavelet, we first relate it to the simplerHaar wavelet.

Diagrams and designs throughout this paper are based on
reversible logic as described by Fredkin and Toffoli [10].
One key element in our design is the V-shaped reversible
binary adder designed by Vedralet al. [11] that has later
been improved [12], [2]. Detailed descriptions of these can
be found in the previously mentioned literature or [13]. The
actual physical implementation is done using reversible dual-
line pass-transistor CMOS technology [14].

We begin in Section II by describing the Haar transform
and its design by a lifting scheme. Section III shows the
H.264 transform and design, followed by its implementation
in Section IV. Finally, in Section V, we conclude and look at
future work.

II. T HE HAAR WAVELET

The very first wavelet has been credited to Haar2 and is a
simple discrete wavelet. It is a special case of theDaubechies
wavelets[3] and has theorthogonal basisof row-vectors,
defined by the following4× 4 Haar matrix:

H =





1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1



 . (1)

The applied matrix of the discrete transforms must be orthogo-
nal (i.e. the basis of row-vectors must beorthonormal), which
is achieved by normalizing each row-vector such that

Ht = diag(
1

2
,
1

2
,
1
√
2
,
1
√
2
)H . (2)

For a 4 × 4 input matrixX , the transformedY is calculated
by Ht XHT

t (whereHT is the transpose ofH) giving that

Y = diag(
1

4
,
1

4
,
1

2
,
1

2
)H XHT . (3)

2Alfréd Haar proposed this function in 1909, long before theterm and
theory of wavelets was used. It has later been recognized as awavelet.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The transformation can thus be calculated using only integer
arithmetic, as the diagonal matrix in practice is not applied.

A. Decomposition into Lifting Scheme

As mentioned in the introduction, the lifting scheme [6]
can be used for implementing wavelets, but it is also a
very powerful tool for reversibly implementing linear trans-
formations. Given an invertible matrix (a matrix with non-
zero determinant), it is possible to automatically generate a
lifting scheme using decomposition. One algorithm for thisis
described in detail by De Vos and Baerdemacker [15].

First, as the determinant ofH is different from unity, we
decomposeH into a diagonal matrixD and a special matrixG
(i.e. a matrix with unit determinant):

H =





D11 0 0 0
0 D22 0 0
0 0 D33 0
0 0 0 D44



G , (4)

where det(D) = D11 D22D33 D44 = det(H) = 8. When
decomposing ann×n matrix this way, the standard procedure
is choosing all diagonal elements equal to1, exceptDnn which
equalsdet(H). This will finally yield one scaling factor and
n2 − 1 lifting factors, as the matrixG is decomposed into
2n− 1 lifting matrices:

G =

(

1 L12 L13 L14

0 1 0 0

0 0 1 0

0 0 0 1

)(

1 0 0 0

L21 1 L23 L24

0 0 1 0

0 0 0 1

)

(

1 0 0 0

0 1 0 0

L31 L32 1 L34

0 0 0 1

)(

1 0 0 0

0 1 0 0

0 0 1 0

L41 L42 L43 1

)

(5)
(

1 0 0 0

0 1 0 0

0 0 1 R34

0 0 0 1

)(

1 0 0 0

0 1 R23 0

0 0 1 0

0 0 0 1

)(

1 R12 0 0

0 1 0 0

0 0 1 0

0 0 0 1

)

,

complemented by zero ton−1 permutation matrices. If we use
more than one non-identity scaling factorDjj , we may use the
extra degrees of freedom in order to obtain the more integer
entries in the decomposition. Here, we have a maximum of
four scaling factors (i.e.D11, D22, D33, andD44) and fifteen
lifting factors (i.e. L12, L13, L14, L21, L23, L24, L31, L32,
L34, L41, L42, L43, R34, R23, andR12.)

Even if we restrict ourselves to positive integer factors, there
exist no less than20 different factorizationsD11 D22 D33 D44

of the number8 and each choice strongly influences the
matrix G and thus its decomposition. The number of non-
unit scaling factors ranges from1 to 3; the number of non-
zero lifting factors ranges from10 to 12. Because we restrict
ourselves to integer scaling factors, all lifting factors are
rational. The denominators of these rationals range from1
to 16. An example of a decomposition with a small number
of lifting coefficients, each with a small denominator, is as
follows:

H =

(

4 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1

)(

1 −

1

2
−

1

2
0

0 1 0 0

0 0 1 0

0 0 0 1

)

(

1 0 0 0

0 1
1

2

1

2
0 0 1 0

0 0 0 1

)(

1 0 0 0

0 1 0 0

1 −1 1 −2

0 0 0 1

)

(6)
(

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

)(

1 0 0 0

0 1 0 0

0 0 1 −2

0 0 0 1

)(

1 0 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

)

• − − 4

?>=<89:;1

2

− • + + • 2

?>=<89:;1

2

?>=<89:;1

2

• − • − − + • •

/.-,()*+2 /.-,()*+2 ?>=<89:;1

2

• + • •

Fig. 1. Possible automatic decomposition of the Haar4 × 4 matrix with
a column vector input using the algorithm presented in [15],chosen for its
simple lifting factors.

− •

��
��
��
��
� • 2 +

• 2 + − •

− •

��
��
�

%%%%%%%%%

• 2 +

,,,,,

Fig. 2. Optimal lifting scheme for the Haar4×4 matrix of a column vector
input.

with two scaling factors (i.e.2 and 4) and ten lifting factors
(i.e.−2, −1, −1/2, 1/2 and1 (all numbers appearing twice)).
Fig. 1 shows the corresponding logic circuit.

Although we have here the choice with the fewest and
simplest lifting factors among the twenty possibilities, this
decomposition is still far from optimal. Many more decompo-
sitions into scaling, swapping, and lifting matrices are possible.
E.g. applying more than one diagonal matrix can yield an
optimal solution3: Fig. 2 shows a decomposition containing
two diagonal matrices, leading to only3 scalings,6 liftings and
1 permutation. The circuit also has a more modular structure.

III. T HE H.264 TRANSFORM

More recent is the H.264 transform [9] that is used in the
MPEG-4/AVC video format. This discrete cosine transforma-
tion has the integer approximation given by:

H264 =





1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1



 . (7)

Again the determinant is different from unity (it amounts
to 40) and restricting ourselves to positive integer factors, there
exist no less than80 different positive integer factorizations
D11 D22 D33 D44. In the automatic lifting scheme generation,

3An informal proof of optimality can be made by starting with the identity
matrix and showing the least number of row operations neededto generate
a matrix without zeroes. We can call this an inverse Gaussianelimination.
Gaussian elimination can also be used for decomposition of the matrix into
lifting steps.

A

��
��
��
��
��

+ • + • P

B • 2 −

��
��
��

• 2 −

��
��
��

Q

C

%%%%%%%%%%

��
��
��
��

+ •

• 5 +

R

/.-,()*+2 /.-,()*+2
D

''''''''
• 2 − − • S

Fig. 3. Optimal lifting scheme for the H.264 discrete cosinetransformation.

the number of non-unit scaling factors ranges from1 to 4, the
number of non-zero lifting factors ranges from11 to 15, and
the denominators of the lifting factors range from1 to as high
as7480.

Applying more than one diagonal matrix yields a better so-
lution and Fig. 3 shows a decomposition with only4 scalings,
8 liftings and3 permutations.

In contrast to the example of Sec. II, we face here the
problem of a scaling factor that is different from a power
of 2, the so-called perfect coefficients [16]. Whereas scaling
factors equal to a power of2 can be implemented as a bit shift,
other scaling factors cannot. To have a simple implementation
in reversible logic we need to introduce a preset input and a
garbage output:

X •

��
��
��
� 5X X • + 5X

X 5 5X ≈ /.-,()*+5 = /.-,()*+4
0 ��������

$$$$$$$
X 0 �������� • X

An extra (preset) input line and an extra (garbage) output
line in fact means that we are embedding the4 × 4 matrix
within a5×5 matrix. The former having a determinant with an
odd prime factor, the latter has a determinant which is a power
of 2. Applying the above scaling-to-lifting transformation is
embedding matrix (7) in the matrix







1 1 1 1 0
2 1 −1 −2 4
1 −1 −1 1 0
1 −2 2 −1 0
0 1 −1 0 0






, (8)

with determinant equal to−8, i.e. a perfect coefficient. In-
stead of replacing only the scaling factor5 by a lift, it is
advantageous to replace the whole block consisting of the
scaling factor together with the preceding lift and succeeding
lift giving the embedding of matrix (7) in







1 1 1 1 0
2 1 −1 −2 0
1 −1 −1 1 0
1 −2 2 −1 −2
0 1 −1 0 1






, (9)

with determinant equal to8 and the lifting scheme shown
in Fig. 4. Whereas the former embedding yields intermediate
results ranging from−5 to 5 times the input data, the latter
embedding restricts all intermediate and final data to the range
from −3 to 4 times the input data.

A

��
��
��
��
��

+ • + • P

B • 2 −

��
��
��

• 2 −

��
��
��

Q

C

%%%%%%%%%%

��
��
��
��

+ •

• +

R

/.-,()*+2
D

''''''''
• 2 − • − S

/.-,()*+2
0 �������� • G

Fig. 4. Lifting scheme for the H.264 discrete cosine transformation with the
simple multiplication but with garbage.

IV. I MPLEMENTATION OF H.264

In order to limit the number of input and output bits such
that the H.264/AVC coder may be embedded in a68-pin
package, our chip is designed using3-bit unsigned integer
inputs and6-bit signed integer outputs, all of which are both
represented by the signal and its negation. Fig. 5 presents a
simplified diagram of the detailed schematic implementation
of the linear transform given in (9) and Fig. 4, designed in
Cadence computer-aided design environment.

The design consists of two4-bit reversible binary adders,
two 4-bit reversible binary subtractors, one5-bit adder, one
5-bit subtractor, one6-bit adder, one6-bit subtractor, and ten
Feynman gates. Each reversible adder and subtractor being
composed of48w−32 transistors (wherew is the word length
of the data: either4, 5, or6) and each Feynman of8 transistors,
the whole chip thus contains1648 transistors for this particular
design.

First, in Box 1 (see Fig. 5) we describe the addition/scaling-
by-2/subtraction step that is used twice in this box. Starting
from 3-bit unsigned integers, all four inputs are zero-extended
to 4 bits. Then the first stage of adders calculate the4-bit sum
of two (originally 3-bit) numbers by updating one of them.
Next, the multiplication-by-two of the non-updated numberis
done by a bit-roll up. Remember that this4-bit number was
zero-extended from a3-bit integer and thus its most significant
bit is equal to0. Finally, using the4-bit numbers, we subtract
the sum from the product. It is not yet necessary to extend
the number representation when we consider the difference as
a signed4-bit integer. The result of Box 1 is therefore two
unsigned4-bit sums and two signed4-bit differences. Using
such mixed representation of the binary integers reduces the
number of necessary transistors.

Now, in Box 2 a calculation similar to the two in Box 1
(with an extra bit-size, see Fig. 5) is performed on the two
4-bit unsigned sums, resulting in a5-bit unsigned number and
a 5-bit signed number. In order to have homogeneous outputs,
the numbers are extended to6-bit (signed) numbers using a
zero- and a sign-extend4, respectively. Also, one of the two

4An n-bit two’s complement signed number issign-extendedto an+1-bit
number by copying the most significant bit, using a single Feynman gate.

0

D

B

A

C

Box 3 (6-bit representation)Box 1 (4-bit representation)

P

R

Q

S

G

Box 2
(5-bit rep)

0

0

0

0

0

00

0

0

0

0

0

0

Fig. 5. Diagram outlining theCadenceschematic of the H.264 discrete cosine transformation. Thegreen wires carry unsigned data, blue wires carry signed
data, and red wires carry signed preset/garbage. The outputs areP = A+B+C+D, Q = 2A+B−C−2D, R = A−B−C+D, S = A−2B+2C−D,
and the garbageG = 2B − 2C.

differences is sign-extended and copied to a garbage line using
5 Feynman gates.

In Box 3, the copied value is sign-extended to a6-bit
number and the double of the other difference (this value is
both sign-extended one bit and multiplied by 2)5 is added. Fi-
nally, the double of the copy is subtracted from the remaining
difference with the correct sign-extension.

All this results in the expected four6-bit signed integer
outputs (P , Q, R, S) and a garbage output (G). By adding
extra logic, it is possible to uncompute this garbage.

V. CONCLUSION AND FUTURE WORK

In this paper we have shown the initial steps for imple-
menting the H.264/AVC transform on a physical chip using
reversible dual-line pass-transistor CMOS technology. The
implementation of the discrete wavelet matrix is optimal with
respect to the number of lifting steps and uses only1648
transistors.

The paper has mainly focused on the encoding of signals but
decoding is just as important. In theory decoding is the inverse
transformation, but in practice, when transforms are used for
signal compression, a lossy step is purposely added after
encoding. This additional step deletes less important signal
information, by rounding of numbers. Therefore, decoding
is done by applying another matrix [9] and this matrix is
dependent on the amount of information one deletes. The
rounding and decoding matrix as presented in [9] actually
leads to a lossy (non-reversible) decoding as integer rounding
can occur. Solving this problem is important for the design
of a single circuit where reversibility is used to both compute
encoding and decoding.

ACKNOWLEDGMENT

The authors would like to thank theDanish Council for
Strategic Researchfor the support of this work in the frame-
work of theMicroPower research project.

5Multiplication-by-2 is done by adding a0 as the least significant bit.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,”SIAM Journal on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[2] M. Skoneczny, Y. Van Rentergem, and A. De Vos, “Reversible Fourier
transform chip,” inProceedings of the 15th International Conference
on Mixed Design of Integrated Circuits and Systems, Poznań, 2008, pp.
281–286.

[3] I. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp.
909–996, 1988.

[4] S. Mallat, “A theory for multiresolution signal decomposition: the
wavelet representation,”Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 11, no. 7, pp. 674–693, July 1989.

[5] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet
transforms that map integers to integers,”Applied and Computational
Harmonic Analysis, vol. 5, no. 3, pp. 332–369, 1998.

[6] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,”Applied and Computational Harmonic Analysis,
vol. 3, no. 2, pp. 186–200, 1996.

[7] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,”Journal of Fourier Analysis and Applications, vol. 4, no. 3,
pp. 247–269, May 1998.

[8] H. B. Axelsen, R. Glück, and T. Yokoyama, “Reversible machine code
and its abstract processor architecture,” inComputer Science – Theory
and Applications. Proceedings, ser. LNCS, V. Diekert, M. V. Volkov,
and A. Voronkov, Eds., vol. 4649. Springer-Verlag, 2007, pp. 56–69.

[9] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-
complexity transform and quantization in H.264/AVC,”Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 13, no. 7,
pp. 598–603, July 2003.

[10] E. Fredkin and T. Toffoli, “Conservative logic,”International Journal
of Theoretical Physics, vol. 21, no. 3-4, pp. 219–253, 1982.

[11] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary
arithmetic operations,”Physical Review A, vol. 54, no. 1, pp. 147–153,
July 1996.

[12] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A
new quantum ripple-carry addition circuit,”arXiv:quant-ph/0410184v1,
2005.

[13] M. K. Thomsen and H. B. Axelsen, “Parallelization of reversible ripple-
carry adders,”Parallel Processing Letters, vol. 19, no. 1, pp. 205–222,
June 2009.

[14] A. De Vos, “Reversible computer hardware,” inElectronic Notes in
Theoretical Computer Science, vol. 253, 2010, pp. 17–22, Proceedings
of the Workshop on Reversible Computation (RC 2009), York.

[15] A. De Vos and S. De Baerdemacker, “Decomposition of a linear
reversible computer: digital versus analog,”International Journal of
Unconventional Computing, vol. 6, 2010.

[16] F. Bruekers and A. van den Enden, “New networks for perfect inversion
and perfect reconstruction,”Selected Areas in Communications, IEEE
Journal on, vol. 10, no. 1, pp. 129–137, Jan 1992.

