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Abstract—Discrete linear transformations form important Malvar et al.[9]. This coding, used in the AVC video format,
steps in processing information. Many such transformatios are s designed such that it only requires simple integer artien
injective and therefore are prime candidates for a physicdy A reversible design using the lifting scheme is proposed and
reversible implementation into hardware. We present here te . S .
first steps towards a reversible digital implementation of tvo the SChemat_'C for the physical 'mplementat'on is preserited
different integer transformations on four inputs: The Haar order to outline the advantages and disadvantages of tHH.2
wavelet and the H.264 transform. wavelet, we first relate it to the simplétaar wavelet

Diagrams and designs throughout this paper are based on
reversible logic as described by Fredkin and Toffoli [10].

Transforms are today an important tool used for analysine key element in our design is the V-shaped reversible
and compression of audio signals, images, video, and musihary adder designed by Vedrat al. [11] that has later
more. A common property of most of these transforms is theen improved [12], [2]. Detailed descriptions of these can
existence of an inverse transform; meaning that they inrthede found in the previously mentioned literature or [13]. The
are lossless, reversible functions. actual physical implementation is done using reversiblal-du

Today, one of the most known and most used transformsliise pass-transistor CMOS technology [14].
the Fourier transform that in its fast, discrete implemgote ~ We begin in Section Il by describing the Haar transform
is widely used ire.g.digital signal processing. For the Fourieland its design by a lifting scheme. Section Il shows the
transform there exists an inverse transform and it hasfiiere H.264 transform and design, followed by its implementation
been researched in a reversible context. Most known peifapm Section V. Finally, in Section V, we conclude and look at
Shor’s factorization algorithm [1] that makes use of a quamt future work.
Fourier transform, but the Fourier transform has also been

) ) . . Lo T I[l. THE HAAR WAVELET
implemented in classical reversible CMOS logic circuits [2 h G let has b dited to Beand i
A problem with the Fourier transform is the use of non-, | "€ Very first wavelet has been credited to Haamd Is a

integer and complex values that in numerical computatioﬁgmoIe discrete wavelet. It is a special case ofifaibechies
result in rounding of fixed-point or floating-point numbersla wayelets[S] and has. theorthogonal ba.S'SOf row-vectors,
thus a lossy coding. Approximation algorithms can solve tﬁjeeﬁned by the followingt x 4 Haar matrix:
loss of information but time consuming multiplications are L1l
. 11 -1 -1

unavoidable. H=11 1 0o o : @)

Today, much focus has moved from the Fourier transform 0o 0 1 -1
to wavelettransforms [3], [4] that are faster than the Fouriethe applied matrix of the discrete transforms must be oxhog
transfornt and allow mapping integers to integers [5]. FOpa| (.e.the basis of row-vectors must bethonorma), which

implementation in reversible computing tliting schem€6] s achieved by normalizing each row-vector such that
is a powerful tool and its use in wavelets was quickly ac- 11 1 1

knowledged [7]. The lifting scheme decomposes an injective Hy = diaQX?, 23 E)H : 2
computation into a series oéversible updatef3].

In this work, as an example, we focus on the wavel
used for theH.264 video coding standards described by

|. INTRODUCTION

&or a4 x 4 input matrix X, the transformed” is calculated
by H, X H! (where H” is the transpose off) giving that

1111
*At the time of writing visiting Vakgroep elektronika en infoatiesyste- 474’9 5)
men, Universiteit Gent.
IWavelet transforms have generally a computational time&¢f) com- 2Alfred Haar proposed this function in 1909, long before teem and
pared to the Fourier transforn@3(n log n), wheren is the size of the data. theory of wavelets was used. It has later been recognizedvasselet.

Y = diag( HXHT. ()
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The transformation can thus be calculated using only imtege
arithmetic, as the diagonal matrix in practice is not amplie

A. Decomposition into Lifting Scheme

As mentioned in the introduction, the lifting scheme [6]
can be used for implementing wavelets, but it is also a
very powerful tool for reversibly implementing linear tsan
formations. Given an invertible matrix (a matrix with non-
zero determinant), it is possible to automatically gereeiat
lifting scheme using decomposition. One algorithm for fkis
described in detail by De Vos and Baerdemacker [15].

First, as the determinant af is different from unity, we
decomposéT into a diagonal matrixD and a special matrig

(i.e. a matrix with unit determinant): Fig. 1. Possible automatic decomposition of the Haat 4 matrix with
a column vector input using the algorithm presented in [tBbsen for its

Du 0 0 0 simple lifting factors.
H— 0 Doo 0 0 GQ (4)
- 0 0 D33 0 ’
0 0 0 Dya

Wheredet(D) = D11 Doy D33 Dy = det(H) = 8. When
decomposing an x n matrix this way, the standard procedure
is choosing all diagonal elements equal t@xceptD,,,, which
equalsdet(H). This will finally yield one scaling factor and
n? — 1 lifting factors, as the matrixG is decomposed into
2n — 1 lifting matrices:

G — (1) L112 Lé?’ L54 L; [1) L23 L(;4 _Fig. 2. Optimal lifting scheme for the Hadrx 4 matrix of a column vector
Do Do b input.
1 0 0 0 1 0 0 0
(L" Ly ?L")(E o 1 8> )
31 32 34 . . . pa
0 oo 1 Lar Laz  laz 1 with two scaling factors (i.e2 and 4) and ten lifting factors
1 0 0 0 1 0 0 1 R 0 0 . . .
o 1 0 o 0 1 Rpy 0 o 17 0 o (i.e.—2, -1, —1/2,1/2 and1 (all numbers appearing twice)).
0 0 1 R 0 0 1 0 0 0 1 0 . . . . .
o o o i o 0 o0 1 o o0 o 1 Fig. 1 shows the corresponding logic circuit.

complemented by zero to—1 permutation matrices. If we use Although we have here the choice with the fewest and
more than one non-identity scaling factor;, we may use the simplest In_‘t_mg _fact_ors among the twenty possibilitiehjst
extra degrees of freedom in order to obtain the more integd@composition is still far from optimal. Many more decompo-
entries in the decomposition. Here, we have a maximum $fions into scaling, swapping, and lifting matrices aregble.
four scaling factorsi(e. D1, Das, D33, and D,,) and fifteen E-9- @pplying more than one diagonal matrix can yield an
liting factors (.e. Li2, L1s, Lia, Lo1, Las, Los, L31, L3, OPtimal solutiort: Fig. 2 shows a decomposition containing

Lia, Lat, Lus, L, Raa, Ros, and Ri.) two diagonal matrices, leading to orfyscalingsg liftings and
Even if we restrict ourselves to positive integer factdiere 1 permutation. The circuit also has a more modular structure.
exist no less thaRo different factorizationd 1 Das D33 Day . THE H.264 TRANSFORM

of the number8 and each choice strongly influences the
matrix G and thus its decomposition. The number of nor}\-/]
unit scaling factors ranges fromto 3; the number of non-
zero lifting factors ranges from0 to 12. Because we restrict

More recent is the H.264 transform [9] that is used in the
PEG-4/AVC video format. This discrete cosine transforma-
tion has the integer approximation given by:

ourselves to integer scaling factors, all lifting factorse a ; } } ;
rational. The denominators of these rationals range fiom Hys= |71 7 1 1 |- (7
to 16. An example of a decomposition with a small number 1 -2 2 -1

;)f”hftlng coefficients, each with a small denominator, is agyain the determinant is different from unity (it amounts
ollows: to 40) and restricting ourselves to positive integer factorsréh

1 1 . . . .
H— o 5 o o s 3 T2 ¢ exist no less tham0 different positive integer factorizations
o 0 o 1 O D11 Doy D33 Dyy. In the automatic lifting scheme generation,
1 0 0 0 1 0 0 0
o 1 5 3 0 roo 9 (6) 3An informal proof of optimality can be made by starting witietidentity
o 0 o 1 o o0 o 1 matrix and showing the least number of row operations ne¢degenerate
1 0 o o 1 o0 o o 1o o o a matrix without zeroes. We can call this an inverse Gausslanination.
o 1 0 o0 o 1 o0 0 0o 1 -1 o0 Gaussian elimination can also be used for decompositiomefatrix into
0 0 1 0 0 0 1 —2 0 0 1 0 |ft 1t
o 0o 1 1 0o 0 o 1 0 0 0 1 Iiing steps.



Fig. 3. Optimal lifting scheme for the H.264 discrete codiresformation.

0 4 .

G

the number of non-unit scaling factors ranges froto 4, the
number of non-zero lifting factors ranges from to 15, and
the denominators of the lifting factors range frano as high
as 7480.

Applying more than one diagonal matrix yields a better so- o . )
lution and Fig. 3 shows a decomposition with odlgcalings, In order to limit the number of input and outpu_t bits .such
8 liftings and3 permutations. that the H.264/_AV_C cod_er may t_)e embedc_ied |r6_$cp|n

In contrast to the example of Sec. Il, we face here tR&ckage our chip is designed using-bit unsigned integer
problem of a scaling factor that is different from a powelPuts andé-bit signed integer outputs, all of which are both
of 2, the so-called perfect coefficients [16]. Whereas scalif§Presented by the signal and its negation. Fig. 5 presents a
factors equal to a power @fcan be implemented as a bit shift S'mplified diagram of the detailed schematic implementetio
other scaling factors cannot. To have a simple implemantatiof the linear transform given in (9) and Fig. 4, designed in

in reversible logic we need to introduce a preset input andc@dence computer-aided design environment
garbage output: The design consists of twa-bit reversible binary adders,

two 4-bit reversible binary subtractors, oriebit adder, one

Fig. 4. Lifting scheme for the H.264 discrete cosine tramstion with the
simple multiplication but with garbage.

IV. IMPLEMENTATION OF H.264

X 5X X 5X 5-bit subtractor, oné-bit adder, one-bit subtractor, and ten
X5X ~ — @) Feynman gates. Each reversible adder and subtractor being
0 x 0 —¢ x composed ofi’w — 32 transistors (where is the word length

of the data: eithet, 5, or 6) and each Feynman &ftransistors,
. . the whole chip th tain$4s t istors for thi ticul
An extra (preset) input line and an extra (garbage) outpal eszgno @ chip thus contairi$4s transistors for this particular

line in fact means that we are embedding the: 4 mairix First, in Box 1 (see Fig. 5) we describe the addition/scaling

within ?‘5X5 matrix. The former having a.determlnan.t with ahy-2/subtraction step that is used twice in this box. Starting
odd prime factor, the latter has a determinant which is a |t>owf?y

. : i - ¥ "from 3-bit unsigned integers, all four inputs are zero-extended
of 2. Applying the above scaling-to-lifting transformation 'So 4 bits. Then the first stage of adders calculate4f®t sum
embedding matrix (7) in the matrix

of two (originally 3-bit) numbers by updating one of them.

; } _} _; 2 Next, the multiplication-by-two of the non-updated numiser
1 -1 -1 1 0 (8) done by a bit-roll up. Remember that thisbit number was
1 -2 2 -1 0 zero-extended from a-bit integer and thus its most significant
0 1 -1 0 0

bit is equal to0. Finally, using thet-bit numbers, we subtract

with determinant equal te-8, i.e. a perfect coefficient. In- the sum from the product. It is not yet necessary to extend

stead of replacing only the scaling factorby a lift, it is the number representation when we consider the differesice a

advantageous to replace the whole block consisting of thesigned4-bit integer. The result of Box 1 is therefore two

scaling factor together with the preceding lift and suca®gd unsigned4-bit sums and two signed-bit differences. Using

lift giving the embedding of matrix (7) in such mixed representation of the binary integers reduces th
11 1 1 0 number of necessary transistors.

2 1 -1 =2 0 Now, in Box 2 a calculation similar to the two in Box 1
1 :; _; _} _g ’ ©) (with an extra bit-size, see Fig. 5) is performed on the two
o 1 -1 o0 1 4-bit unsigned sums, resulting in5abit unsigned number and

with determinant equal t& and the lifting scheme shown & 5-bit signed number. In order.to h.ave homogeneous putputs,
in Fig. 4. Whereas the former embedding yields intermedigfe® numbers are extended Gebit (signed) numbers using a
results ranging from-5 to 5 times the input data, the latter28"0- and a sign-extefidrespectively. Also, one of the two
embedding restricts all intermediate and final data to thgea

- ) 4An n-bit two’'s complement signed numbersign-extendedo an + 1-bit
from —3 to 4 times the input data.

number by copying the most significant bit, using a singlerfregn gate.



Fig. 5.
data, and red wires carry signed preset/garbage. The supel’ = A+B+C+D,Q =2A+B—-C—-2D,R=A-B—-C+D,S=A-2B+2C—-D,
and the garbagél = 2B — 2C.

differences is sign-extended and copied to a garbage ling us
5 Feynman gates.

In Box 3, the copied value is sign-extended to6-dit
number and the double of the other difference (this value i[sz]
both sign-extended one bit and multiplied by & added. Fi-
nally, the double of the copy is subtracted from the remajinin
difference with the correct sign-extension.

All this results in the expected fous-bit signed integer
outputs P, @, R, S) and a garbage outputzj. By adding
extra logic, it is possible to uncompute this garbage.

(1]

(3]

V. CONCLUSION AND FUTURE WORK [5]

In this paper we have shown the initial steps for imple-
menting the H.264/AVC transform on a physical chip usind6]
reversible dual-line pass-transistor CMOS technologye Th
implementation of the discrete wavelet matrix is optimathwi [7]
respect to the number of lifting steps and uses oriy¢8
transistors. 8]

The paper has mainly focused on the encoding of signals but
decoding is just as important. In theory decoding is theriswe
transformation, but in practice, when transforms are used f [g)
signal compression, a lossy step is purposely added after
encoding. This additional step deletes less importantasign
information, by rounding of numbers. Therefore, decodingo
is done by applying another matrix [9] and this matrix is
dependent on the amount of information one deletes. THe!
rounding and decoding matrix as presented in [9] actually
leads to a lossy (non-reversible) decoding as integer riagnd[12]
can occur. Solving this problem is important for the design
of a single circuit where reversibility is used to both cortgu [13]
encoding and decoding.
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SMultiplication-by-2 is done by adding @ as the least significant bit.
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Diagram outlining th&€adenceschematic of the H.264 discrete cosine transformation. green wires carry unsigned data, blue wires carry signed
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