1,422 research outputs found

    Hardware Impairments Aware Transceiver Design for Bidirectional Full-Duplex MIMO OFDM Systems

    Full text link
    In this paper we address the linear precoding and decoding design problem for a bidirectional orthogonal frequencydivision multiplexing (OFDM) communication system, between two multiple-input multiple-output (MIMO) full-duplex (FD) nodes. The effects of hardware distortion as well as the channel state information error are taken into account. In the first step, we transform the available time-domain characterization of the hardware distortions for FD MIMO transceivers to the frequency domain, via a linear Fourier transformation. As a result, the explicit impact of hardware inaccuracies on the residual selfinterference (RSI) and inter-carrier leakage (ICL) is formulated in relation to the intended transmit/received signals. Afterwards, linear precoding and decoding designs are proposed to enhance the system performance following the minimum-mean-squarederror (MMSE) and sum rate maximization strategies, assuming the availability of perfect or erroneous CSI. The proposed designs are based on the application of alternating optimization over the system parameters, leading to a necessary convergence. Numerical results indicate that the application of a distortionaware design is essential for a system with a high hardware distortion, or for a system with a low thermal noise variance.Comment: Submitted to IEEE for publicatio

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    MSE-Based Transceiver Designs for Full-Duplex MIMO Cognitive Radios

    Get PDF
    We study two scenarios of full-duplex (FD) multiple-input-multiple-output cognitive radio networks: FD cognitive ad hoc networks and FD cognitive cellular networks. In FD cognitive ad hoc networks (also referred as interference channels), each pair of secondary users (SUs) operate in FD mode and communicate with each other within the service range of primary users (PUs). Each SU experiences not only self-interference but also interuser interference from all other SUs, and all SUs generate interference on PUs. We address two optimization problems: one is to minimize the sum of mean-squared errors (MSE) of all estimated symbols, and the other is to minimize the maximum per-SU MSE of estimated symbols, both of which are subject to power constraints at SUs and interference constraints projected to each PU. We show that these problems can be cast as a second-order cone programming, and joint design of transceiver matrices can be obtained through an iterative algorithm. Moreover, we show that the proposed algorithm is not only applicable to interference channels but also to FD cellular systems, in which a base station operating in FD mode simultaneously serves multiple uplink and downlink users, and it is shown to outperform HD scheme significantly
    • …
    corecore