267,995 research outputs found

    Robust Linear Temporal Logic

    Get PDF
    Although it is widely accepted that every system should be robust, in the sense that "small" violations of environment assumptions should lead to "small" violations of system guarantees, it is less clear how to make this intuitive notion of robustness mathematically precise. In this paper, we address this problem by developing a robust version of Linear Temporal Logic (LTL), which we call robust LTL and denote by rLTL. Formulas in rLTL are syntactically identical to LTL formulas but are endowed with a many-valued semantics that encodes robustness. In particular, the semantics of the rLTL formula φψ\varphi \Rightarrow \psi is such that a "small" violation of the environment assumption φ\varphi is guaranteed to only produce a "small" violation of the system guarantee ψ\psi. In addition to introducing rLTL, we study the verification and synthesis problems for this logic: similarly to LTL, we show that both problems are decidable, that the verification problem can be solved in time exponential in the number of subformulas of the rLTL formula at hand, and that the synthesis problem can be solved in doubly exponential time

    A Metric for Linear Temporal Logic

    Full text link
    We propose a measure and a metric on the sets of infinite traces generated by a set of atomic propositions. To compute these quantities, we first map properties to subsets of the real numbers and then take the Lebesgue measure of the resulting sets. We analyze how this measure is computed for Linear Temporal Logic (LTL) formulas. An implementation for computing the measure of bounded LTL properties is provided and explained. This implementation leverages SAT model counting and effects independence checks on subexpressions to compute the measure and metric compositionally

    A Proof of Stavi's Theorem

    Full text link
    Kamp's theorem established the expressive equivalence of the temporal logic with Until and Since and the First-Order Monadic Logic of Order (FOMLO) over the Dedekind-complete time flows. However, this temporal logic is not expressively complete for FOMLO over the rationals. Stavi introduced two additional modalities and proved that the temporal logic with Until, Since and Stavi's modalities is expressively equivalent to FOMLO over all linear orders. We present a simple proof of Stavi's theorem.Comment: arXiv admin note: text overlap with arXiv:1401.258

    Allen Linear (Interval) Temporal Logic --Translation to LTL and Monitor Synthesis--

    Get PDF
    The relationship between two well established formalisms for temporal reasoning is first investigated, namely between Allen's interval algebra (or Allen's temporal logic, abbreviated \ATL) and linear temporal logic (\LTL). A discrete variant of \ATL is defined, called Allen linear temporal logic (\ALTL), whose models are \omega-sequences of timepoints, like in \LTL. It is shown that any \ALTL formula can be linearly translated into an equivalent \LTL formula, thus enabling the use of \LTL techniques and tools when requirements are expressed in \ALTL. %This translation also implies the NP-completeness of \ATL satisfiability. Then the monitoring problem for \ALTL is discussed, showing that it is NP-complete despite the fact that the similar problem for \LTL is EXPSPACE-complete. An effective monitoring algorithm for \ALTL is given, which has been implemented and experimented with in the context of planning applications

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    On Relaxing Metric Information in Linear Temporal Logic

    Full text link
    Metric LTL formulas rely on the next operator to encode time distances, whereas qualitative LTL formulas use only the until operator. This paper shows how to transform any metric LTL formula M into a qualitative formula Q, such that Q is satisfiable if and only if M is satisfiable over words with variability bounded with respect to the largest distances used in M (i.e., occurrences of next), but the size of Q is independent of such distances. Besides the theoretical interest, this result can help simplify the verification of systems with time-granularity heterogeneity, where large distances are required to express the coarse-grain dynamics in terms of fine-grain time units.Comment: Minor change

    Robust Temporal Logic Model Predictive Control

    Full text link
    Control synthesis from temporal logic specifications has gained popularity in recent years. In this paper, we use a model predictive approach to control discrete time linear systems with additive bounded disturbances subject to constraints given as formulas of signal temporal logic (STL). We introduce a (conservative) computationally efficient framework to synthesize control strategies based on mixed integer programs. The designed controllers satisfy the temporal logic requirements, are robust to all possible realizations of the disturbances, and optimal with respect to a cost function. In case the temporal logic constraint is infeasible, the controller satisfies a relaxed, minimally violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, IL (2015

    The intuitionistic temporal logic of dynamical systems

    Get PDF
    A dynamical system is a pair (X,f)(X,f), where XX is a topological space and f ⁣:XXf\colon X\to X is continuous. Kremer observed that the language of propositional linear temporal logic can be interpreted over the class of dynamical systems, giving rise to a natural intuitionistic temporal logic. We introduce a variant of Kremer's logic, which we denote ITLc{\sf ITL^c}, and show that it is decidable. We also show that minimality and Poincar\'e recurrence are both expressible in the language of ITLc{\sf ITL^c}, thus providing a decidable logic expressive enough to reason about non-trivial asymptotic behavior in dynamical systems
    corecore