143,224 research outputs found

    Polynomial Optimization with Applications to Stability Analysis and Control - Alternatives to Sum of Squares

    Full text link
    In this paper, we explore the merits of various algorithms for polynomial optimization problems, focusing on alternatives to sum of squares programming. While we refer to advantages and disadvantages of Quantifier Elimination, Reformulation Linear Techniques, Blossoming and Groebner basis methods, our main focus is on algorithms defined by Polya's theorem, Bernstein's theorem and Handelman's theorem. We first formulate polynomial optimization problems as verifying the feasibility of semi-algebraic sets. Then, we discuss how Polya's algorithm, Bernstein's algorithm and Handelman's algorithm reduce the intractable problem of feasibility of semi-algebraic sets to linear and/or semi-definite programming. We apply these algorithms to different problems in robust stability analysis and stability of nonlinear dynamical systems. As one contribution of this paper, we apply Polya's algorithm to the problem of H_infinity control of systems with parametric uncertainty. Numerical examples are provided to compare the accuracy of these algorithms with other polynomial optimization algorithms in the literature.Comment: AIMS Journal of Discrete and Continuous Dynamical Systems - Series

    Complexity Reduction for Parameter-Dependent Linear Systems

    Full text link
    We present a complexity reduction algorithm for a family of parameter-dependent linear systems when the system parameters belong to a compact semi-algebraic set. This algorithm potentially describes the underlying dynamical system with fewer parameters or state variables. To do so, it minimizes the distance (i.e., H-infinity-norm of the difference) between the original system and its reduced version. We present a sub-optimal solution to this problem using sum-of-squares optimization methods. We present the results for both continuous-time and discrete-time systems. Lastly, we illustrate the applicability of our proposed algorithm on numerical examples

    Survivability of Deterministic Dynamical Systems

    Get PDF
    The notion of a part of phase space containing desired (or allowed) states of a dynamical system is important in a wide range of complex systems research. It has been called the safe operating space, the viability kernel or the sunny region. In this paper we define the notion of survivability: Given a random initial condition, what is the likelihood that the transient behaviour of a deterministic system does not leave a region of desirable states. We demonstrate the utility of this novel stability measure by considering models from climate science, neuronal networks and power grids. We also show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work underlines that the type of stability measured by survivability is not captured by common asymptotic stability measures.Comment: 21 pages, 6 figure

    On the Structure of the Global Attractor for Infinite-Dimensional Non-Autonomous Dynamical Systems with Weak Convergence

    Get PDF
    The aim of this paper is to describe the structure of global attractors for infinite-dimensional non-autonomous dynamical systems with recurrent coefficients. We consider a special class of this type of systems (the so–called weak convergent systems). We study this problem in the framework of general non-autonomous dynamical systems (cocycles). In particular, we apply the general results obtained in our previous paper to study the almost periodic (almost automorphic, recurrent, pseudo recurrent) and asymptotically almost periodic (asymptotically almost automorphic, asymptotically recurrent, asymptotically pseudo recurrent) solutions of different classes of differential equations (functional-differential equations, evolution equation with monotone operator, semi-linear parabolic equations)
    corecore