1,797 research outputs found

    An approximation trichotomy for Boolean #CSP

    Get PDF
    We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Otherwise, if every relation in the constraint language is in the co-clone IM_2 from Post's lattice, then the problem of counting satisfying assignments is complete with respect to approximation-preserving reductions in the complexity class #RH\Pi_1. This means that the problem of approximately counting satisfying assignments of such a CSP instance is equivalent in complexity to several other known counting problems, including the problem of approximately counting the number of independent sets in a bipartite graph. For every other fixed constraint language, the problem is complete for #P with respect to approximation-preserving reductions, meaning that there is no fully polynomial randomised approximation scheme for counting satisfying assignments unless NP=RP

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations

    Generalized satisfiability problems via operator assignments

    Get PDF
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. This representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For constraints given by a system of linear equations over the two-element field, earlier work in the foundations of quantum mechanics has shown that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. Our main result is a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments.Peer ReviewedPostprint (published version

    The complexity of counting locally maximal satisfying assignments of Boolean CSPs

    Get PDF
    We investigate the computational complexity of the problem of counting the maximal satisfying assignments of a Constraint Satisfaction Problem (CSP) over the Boolean domain {0,1}. A satisfying assignment is maximal if any new assignment which is obtained from it by changing a 0 to a 1 is unsatisfying. For each constraint language Gamma, #MaximalCSP(Gamma) denotes the problem of counting the maximal satisfying assignments, given an input CSP with constraints in Gamma. We give a complexity dichotomy for the problem of exactly counting the maximal satisfying assignments and a complexity trichotomy for the problem of approximately counting them. Relative to the problem #CSP(Gamma), which is the problem of counting all satisfying assignments, the maximal version can sometimes be easier but never harder. This finding contrasts with the recent discovery that approximately counting maximal independent sets in a bipartite graph is harder (under the usual complexity-theoretic assumptions) than counting all independent sets.Comment: V2 adds contextual material relating the results obtained here to earlier work in a different but related setting. The technical content is unchanged. V3 (this version) incorporates minor revisions. The title has been changed to better reflect what is novel in this work. This version has been accepted for publication in Theoretical Computer Science. 19 page

    Optimization Modulo Theories with Linear Rational Costs

    Full text link
    In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any previous work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In the work described in this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in the AR, FV and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: Submitted on january 2014 to ACM Transactions on Computational Logic, currently under revision. arXiv admin note: text overlap with arXiv:1202.140

    An Instantiation-Based Approach for Solving Quantified Linear Arithmetic

    Full text link
    This paper presents a framework to derive instantiation-based decision procedures for satisfiability of quantified formulas in first-order theories, including its correctness, implementation, and evaluation. Using this framework we derive decision procedures for linear real arithmetic (LRA) and linear integer arithmetic (LIA) formulas with one quantifier alternation. Our procedure can be integrated into the solving architecture used by typical SMT solvers. Experimental results on standardized benchmarks from model checking, static analysis, and synthesis show that our implementation of the procedure in the SMT solver CVC4 outperforms existing tools for quantified linear arithmetic
    • …
    corecore