2,049 research outputs found

    Detecting Floating-Point Errors via Atomic Conditions

    Get PDF
    This paper tackles the important, difficult problem of detecting program inputs that trigger large floating-point errors in numerical code. It introduces a novel, principled dynamic analysis that leverages the mathematically rigorously analyzed condition numbers for atomic numerical operations, which we call atomic conditions, to effectively guide the search for large floating-point errors. Compared with existing approaches, our work based on atomic conditions has several distinctive benefits: (1) it does not rely on high-precision implementations to act as approximate oracles, which are difficult to obtain in general and computationally costly; and (2) atomic conditions provide accurate, modular search guidance. These benefits in combination lead to a highly effective approach that detects more significant errors in real-world code (e.g., widely-used numerical library functions) and achieves several orders of speedups over the state-of-the-art, thus making error analysis significantly more practical. We expect the methodology and principles behind our approach to benefit other floating-point program analysis tasks such as debugging, repair and synthesis. To facilitate the reproduction of our work, we have made our implementation, evaluation data and results publicly available on GitHub at https://github.com/FP-Analysis/atomic-condition.ISSN:2475-142

    Hamiltonian Simulation by Qubitization

    Full text link
    We present the problem of approximating the time-evolution operator eiH^te^{-i\hat{H}t} to error ϵ\epsilon, where the Hamiltonian H^=(GI^)U^(GI^)\hat{H}=(\langle G|\otimes\hat{\mathcal{I}})\hat{U}(|G\rangle\otimes\hat{\mathcal{I}}) is the projection of a unitary oracle U^\hat{U} onto the state G|G\rangle created by another unitary oracle. Our algorithm solves this with a query complexity O(t+log(1/ϵ))\mathcal{O}\big(t+\log({1/\epsilon})\big) to both oracles that is optimal with respect to all parameters in both the asymptotic and non-asymptotic regime, and also with low overhead, using at most two additional ancilla qubits. This approach to Hamiltonian simulation subsumes important prior art considering Hamiltonians which are dd-sparse or a linear combination of unitaries, leading to significant improvements in space and gate complexity, such as a quadratic speed-up for precision simulations. It also motivates useful new instances, such as where H^\hat{H} is a density matrix. A key technical result is `qubitization', which uses the controlled version of these oracles to embed any H^\hat{H} in an invariant SU(2)\text{SU}(2) subspace. A large class of operator functions of H^\hat{H} can then be computed with optimal query complexity, of which eiH^te^{-i\hat{H}t} is a special case.Comment: 23 pages, 1 figure; v2: updated notation; v3: accepted versio

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a κ\kappa-conditioned problem in O(κ)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(κ1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(κ)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    Gate-Level Simulation of Quantum Circuits

    Get PDF
    While thousands of experimental physicists and chemists are currently trying to build scalable quantum computers, it appears that simulation of quantum computation will be at least as critical as circuit simulation in classical VLSI design. However, since the work of Richard Feynman in the early 1980s little progress was made in practical quantum simulation. Most researchers focused on polynomial-time simulation of restricted types of quantum circuits that fall short of the full power of quantum computation. Simulating quantum computing devices and useful quantum algorithms on classical hardware now requires excessive computational resources, making many important simulation tasks infeasible. In this work we propose a new technique for gate-level simulation of quantum circuits which greatly reduces the difficulty and cost of such simulations. The proposed technique is implemented in a simulation tool called the Quantum Information Decision Diagram (QuIDD) and evaluated by simulating Grover's quantum search algorithm. The back-end of our package, QuIDD Pro, is based on Binary Decision Diagrams, well-known for their ability to efficiently represent many seemingly intractable combinatorial structures. This reliance on a well-established area of research allows us to take advantage of existing software for BDD manipulation and achieve unparalleled empirical results for quantum simulation

    Quantum SDP-Solvers: Better upper and lower bounds

    Get PDF
    Brand\~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension nn of the problem and the number mm of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure. We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with mnmn when mnm\approx n, which is the same as classical.Comment: v4: 69 pages, small corrections and clarifications. This version will appear in Quantu
    corecore