1,353,775 research outputs found

    How to determine linear complexity and kk-error linear complexity in some classes of linear recurring sequences

    Get PDF
    Several fast algorithms for the determination of the linear complexity of dd-periodic sequences over a finite field \F_q, i.e. sequences with characteristic polynomial f(x)=xd−1f(x) = x^d-1, have been proposed in the literature. In this contribution fast algorithms for determining the linear complexity of binary sequences with characteristic polynomial f(x)=(x−1)df(x) = (x-1)^d for an arbitrary positive integer dd, and f(x)=(x2+x+1)2vf(x) = (x^2+x+1)^{2^v} are presented. The result is then utilized to establish a fast algorithm for determining the kk-error linear complexity of binary sequences with characteristic polynomial (x2+x+1)2v(x^2+x+1)^{2^v}

    Generalized joint linear complexity of linear recurring multisequences

    Get PDF
    The joint linear complexity of multisequences is an important security measure for vectorized stream cipher systems. Extensive research has been carried out on the joint linear complexity of NN-periodic multisequences using tools from Discrete Fourier transform. Each NN-periodic multisequence can be identified with a single NN-periodic sequence over an appropriate extension field. It has been demonstrated that the linear complexity of this sequence, the so called generalized joint linear complexity of the multisequence, may be considerably smaller than the joint linear complexity, which is not desirable for vectorized stream ciphers. Recently new methods have been developed and results of greater generality on the joint linear complexity of multisequences consisting of linear recurring sequences have been obtained. In this paper, using these new methods, we investigate the relations between the generalized joint linear complexity and the joint linear complexity of multisequences consisting of linear recurring sequences

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    The Computational Complexity of Linear Optics

    Full text link
    We give new evidence that quantum computers -- moreover, rudimentary quantum computers built entirely out of linear-optical elements -- cannot be efficiently simulated by classical computers. In particular, we define a model of computation in which identical photons are generated, sent through a linear-optical network, then nonadaptively measured to count the number of photons in each mode. This model is not known or believed to be universal for quantum computation, and indeed, we discuss the prospects for realizing the model using current technology. On the other hand, we prove that the model is able to solve sampling problems and search problems that are classically intractable under plausible assumptions. Our first result says that, if there exists a polynomial-time classical algorithm that samples from the same probability distribution as a linear-optical network, then P^#P=BPP^NP, and hence the polynomial hierarchy collapses to the third level. Unfortunately, this result assumes an extremely accurate simulation. Our main result suggests that even an approximate or noisy classical simulation would already imply a collapse of the polynomial hierarchy. For this, we need two unproven conjectures: the "Permanent-of-Gaussians Conjecture", which says that it is #P-hard to approximate the permanent of a matrix A of independent N(0,1) Gaussian entries, with high probability over A; and the "Permanent Anti-Concentration Conjecture", which says that |Per(A)|>=sqrt(n!)/poly(n) with high probability over A. We present evidence for these conjectures, both of which seem interesting even apart from our application. This paper does not assume knowledge of quantum optics. Indeed, part of its goal is to develop the beautiful theory of noninteracting bosons underlying our model, and its connection to the permanent function, in a self-contained way accessible to theoretical computer scientists.Comment: 94 pages, 4 figure
    • …
    corecore