4,298 research outputs found

    Concatenation of Error Avoiding with Error Correcting Quantum Codes for Correlated Noise Models

    Full text link
    We study the performance of simple error correcting and error avoiding quantum codes together with their concatenation for correlated noise models. Specifically, we consider two error models: i) a bit-flip (phase-flip) noisy Markovian memory channel (model I); ii) a memory channel defined as a memory degree dependent linear combination of memoryless channels with Kraus decompositions expressed solely in terms of tensor products of X-Pauli (Z-Pauli) operators (model II). The performance of both the three-qubit bit flip (phase flip) and the error avoiding codes suitable for the considered error models is quantified in terms of the entanglement fidelity. We explicitly show that while none of the two codes is effective in the extreme limit when the other is, the three-qubit bit flip (phase flip) code still works for high enough correlations in the errors, whereas the error avoiding code does not work for small correlations. Finally, we consider the concatenation of such codes for both error models and show that it is particularly advantageous for model II in the regime of partial correlations.Comment: 16 pages, 3 figure

    New Parameters of Linear Codes Expressing Security Performance of Universal Secure Network Coding

    Full text link
    The universal secure network coding presented by Silva et al. realizes secure and reliable transmission of a secret message over any underlying network code, by using maximum rank distance codes. Inspired by their result, this paper considers the secure network coding based on arbitrary linear codes, and investigates its security performance and error correction capability that are guaranteed independently of the underlying network code. The security performance and error correction capability are said to be universal when they are independent of underlying network codes. This paper introduces new code parameters, the relative dimension/intersection profile (RDIP) and the relative generalized rank weight (RGRW) of linear codes. We reveal that the universal security performance and universal error correction capability of secure network coding are expressed in terms of the RDIP and RGRW of linear codes. The security and error correction of existing schemes are also analyzed as applications of the RDIP and RGRW.Comment: IEEEtran.cls, 8 pages, no figure. To appear in Proc. 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2012). Version 2 added an exact expression of the universal error correction capability in terms of the relative generalized rank weigh
    • …
    corecore