1,842,589 research outputs found
Thermal short improves sensitivity of cryogenically cooled maser
In-line, quarter-wave thermal short cools the center conductor of the signal-input coaxial transmission line to a cryogenically cooled traveling wave maser. It reduces both the thermal noise contribution of the coaxial line and the heat leak through the center conductor to the maser at 4.4 degrees K
A dimension-breaking phenomenon for water waves with weak surface tension
It is well known that the water-wave problem with weak surface tension has
small-amplitude line solitary-wave solutions which to leading order are
described by the nonlinear Schr\"odinger equation. The present paper contains
an existence theory for three-dimensional periodically modulated solitary-wave
solutions which have a solitary-wave profile in the direction of propagation
and are periodic in the transverse direction; they emanate from the line
solitary waves in a dimension-breaking bifurcation. In addition, it is shown
that the line solitary waves are linearly unstable to long-wavelength
transverse perturbations. The key to these results is a formulation of the
water wave problem as an evolutionary system in which the transverse horizontal
variable plays the role of time, a careful study of the purely imaginary
spectrum of the operator obtained by linearising the evolutionary system at a
line solitary wave, and an application of an infinite-dimensional version of
the classical Lyapunov centre theorem.Comment: The final publication is available at Springer via
http://dx.doi.org/10.1007/s00205-015-0941-
Spectroscopic analysis of interaction between an EIT wave and a coronal upflow region
We report a spectroscopic analysis of an EIT wave event that occurred in
active region 11081 on 2010 June 12 and was associated with an M2.0 class
flare. The wave propagated near circularly. The south-eastern part of the wave
front passed over an upflow region nearby a magnetic bipole. Using EIS raster
observations for this region, we studied the properties of plasma dynamics in
the wave front, as well as the interaction between the wave and the upflow
region. We found a weak blueshift for the Fe XII {\lambda}195.12 and Fe XIII
{\lambda}202.04 lines in the wave front. The local velocity along the solar
surface, which is deduced from the line of sight velocity in the wave front and
the projection effect, is much lower than the typical propagation speed of the
wave. A more interesting finding is that the upflow and non-thermal velocities
in the upflow region are suddenly diminished after the transit of the wave
front. This implies a significant change of magnetic field orientation when the
wave passed. As the lines in the upflow region are redirected, the velocity
along the line of sight is diminished as a result. We suggest that this
scenario is more in accordance with what was proposed in the field-line
stretching model of EIT waves.Comment: 13 pages, 7 figures, accepted for publication in Ap
Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA
We present plasma diagnostics of an EIT wave observed with high cadence in
Hinode/EIS sit-and-stare spectroscopy and SDO/AIA imagery obtained during the
HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave
front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI
spectral lines (log T ~ 6.1-6.4) with line-of-sight (LOS) velocities up to 20
km/s. These red-shifts are followed by blue-shifts with upward velocities up to
-5 km/s indicating relaxation of the plasma behind the wave front. During the
wave evolution, the downward velocity pulse steepens from a few km/s up to 20
km/s and subsequently decays, correlated with the relative changes of the line
intensities. The expected increase of the plasma densities at the EIT wave
front estimated from the observed intensity increase lies within the noise
level of our density diagnostics from EIS XIII 202/203 AA line ratios. No
significant LOS plasma motions are observed in the He II line, suggesting that
the wave pulse was not strong enough to perturb the underlying chromosphere.
This is consistent with the finding that no Halpha Moreton wave was associated
with the event. The EIT wave propagating along the EIS slit reveals a strong
deceleration of a ~ -540 m/s2 and a start velocity of v0 ~ 590 km/s. These
findings are consistent with the passage of a coronal fast-mode MHD wave,
pushing the plasma downward and compressing it at the coronal base.Comment: Accepted for ApJ Letter
Line emission from gamma-ray burst environments
The time and angle dependent line and continuum emission from a dense torus
around a cosmological gamma-ray burst source is simulated, taking into account
photoionization, collisional ionization, recombination, and electron heating
and cooling due to various processes. The importance of the hydrodynamical
interaction between the torus and the expanding blast wave is stressed. Due to
the rapid deceleration of the blast wave as it interacts with the dense torus,
the material in the torus will be illuminated by a drastically different photon
spectrum than observable through a low-column-density line of sight, and will
be heated by the hydrodynamical interaction between the blast wave and the
torus. A model calculation to reproduce the Fe K-alpha line emission observed
in the X-ray afterglow of GRB 970508 is presented. The results indicate that ~
10^{-4} solar masses of iron must be concentrated in a region of less than
10^{-3} pc. The illumination of the torus material due to the hydrodynamic
interaction of the blast wave with the torus is the dominant heating and
ionization mechanism leading to the formation of the iron line. These results
suggest that misaligned GRBs may be detectable as X-ray flashes with pronounced
iron emission line features.Comment: Accepted for publication in ApJ. Updated recombination rate data;
discussion on element abundances added; references update
A Compact and Wideband Coupled-Line Coupler with High Coupling Level Using Shunt Periodic Stubs
A wideband microstrip forward-wave coupled-line coupler with high coupling value is presented. Compared with the conventional edge-coupled microstrip forward-wave coupler, this symmetrical structure, consisting periodic shunt stubs between the two coupled-lines, achieves wider operating bandwidth and larger coupling level. To characterize this structure, the equivalent circuit model is established and verified by measurement and full-wave results. The designed and fabricated prototype is a 0-dB forward-wave coupler with 0.6 mm stub length. This coupler exhibits a coupled amplitude balance of ±2 dB, good matching (15dB) and at least 15dB isolation between adjacent ports over a wide bandwidth of 66% from 2 GHz to 4 GHz centered at 3 GHz. The coupled-line length and width of the proposed structure are approximately λg/2 and λg/13, respectively, which makes it more compact than the conventional forward coupled-line couplers
Magnetic field dependence of the superconducting gap node topology in non-centrosymmetric CePtSi
The non-centrosymmetric superconductor CePtSi is believed to have a line
node in the energy gap arising from coexistence of s-wave and p-wave pairing.
We show that a weak c-axis magnetic field will remove this line node, since it
has no topological stability against time-reversal symmetry breaking
perturbations. Conversely a field in the plane is shown to remove the
line node on some regions of the Fermi surface, while bifurcating the line node
in other directions, resulting in two 'boomerang'-like shapes. These line node
topological changes are predicted to be observable experimentally in the low
temperature heat capacity.Comment: 4 pages, 3 figure
Effects of Length and Diameter of Open-Ended Coaxial Sensor on its Reflection Coefficient
This paper presents a calibration technique for a coaxial sensor using a transmission signal approach. The sensor was fabricated from commercially available RG402/U and RG405/U semi-rigid coaxial cable. The length of the coaxial sensor was correlated with the attenuation and standing wave inside the coaxial line. The functions of multiple reflection amplitude and tolerance length with respect to the actual length of coaxial line were empirically formulated using regression analysis. The tolerances and the undesired standing wave which occurs along the coaxial line were analyzed in detai
Microwave Slow-Wave Structure and Phase-Compensation Technique for Microwave Power Divider
In this paper, T-shaped electromagnetic bandgap is loaded on a coupled transmission line itself and its electric performance is studied. Results show that microwave slow-wave effect can be enhanced and therefore, size reduction of a transmission-line-based circuit is possible. However, the transmission-line-based circuits characterize varied phase responses against frequency, which becomes a disadvantage where constant phase response is required. Consequently, a phase-compensation technique is further presented and studied. For demonstration purpose, an 8-way coupled-line power divider with 22.5 degree phase shifts between adjacent output ports, based on the studied slow-wave structure and phase-compensation technique, is developed. Results show both compact circuit architecture and improved phase imbalance are realized, confirming the investigated circuit structures and analyzing methodologies
- …
