1,750 research outputs found

    Visualizing Magnitude and Direction in Flow Fields

    Get PDF
    In weather visualizations, it is common to see vector data represented by glyphs placed on grids. The glyphs either do not encode magnitude in readable steps, or have designs that interfere with the data. The grids form strong but irrelevant patterns. Directional, quantitative glyphs bent along streamlines are more effective for visualizing flow patterns. With the goal of improving the perception of flow patterns in weather forecasts, we designed and evaluated two variations on a glyph commonly used to encode wind speed and direction in weather visualizations. We tested the ability of subjects to determine wind direction and speed: the results show the new designs are superior to the traditional. In a second study we designed and evaluated new methods for representing modeled wave data using similar streamline-based designs. We asked subjects to rate the marine weather visualizations: the results revealed a preference for some of the new designs

    SMLSOM: The shrinking maximum likelihood self-organizing map

    Full text link
    Determining the number of clusters in a dataset is a fundamental issue in data clustering. Many methods have been proposed to solve the problem of selecting the number of clusters, considering it to be a problem with regard to model selection. This paper proposes an efficient algorithm that automatically selects a suitable number of clusters based on a probability distribution model framework. The algorithm includes the following two components. First, a generalization of Kohonen's self-organizing map (SOM) is introduced. In Kohonen's SOM, clusters are modeled as mean vectors. In the generalized SOM, each cluster is modeled as a probabilistic distribution and constructed by samples classified based on the likelihood. Second, the dynamically updating method of the SOM structure is introduced. In Kohonen's SOM, each cluster is tied to a node of a fixed two-dimensional lattice space and learned using neighborhood relations between nodes based on Euclidean distance. The extended SOM defines a graph with clusters as vertices and neighborhood relations as links and updates the graph structure by cutting weakly-connection and unnecessary vertex deletions. The weakness of a link is measured using the Kullback--Leibler divergence, and the redundancy of a vertex is measured using the minimum description length. Those extensions make it efficient to determine the appropriate number of clusters. Compared with existing methods, the proposed method is computationally efficient and can accurately select the number of clusters

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    Iterated Classification of Document Images

    Get PDF

    Plant Seed Identification

    Get PDF
    Plant seed identification is routinely performed for seed certification in seed trade, phytosanitary certification for the import and export of agricultural commodities, and regulatory monitoring, surveillance, and enforcement. Current identification is performed manually by seed analysts with limited aiding tools. Extensive expertise and time is required, especially for small, morphologically similar seeds. Computers are, however, especially good at recognizing subtle differences that humans find difficult to perceive. In this thesis, a 2D, image-based computer-assisted approach is proposed. The size of plant seeds is extremely small compared with daily objects. The microscopic images of plant seeds are usually degraded by defocus blur due to the high magnification of the imaging equipment. It is necessary and beneficial to differentiate the in-focus and blurred regions given that only sharp regions carry distinctive information usually for identification. If the object of interest, the plant seed in this case, is in- focus under a single image frame, the amount of defocus blur can be employed as a cue to separate the object and the cluttered background. If the defocus blur is too strong to obscure the object itself, sharp regions of multiple image frames acquired at different focal distance can be merged together to make an all-in-focus image. This thesis describes a novel non-reference sharpness metric which exploits the distribution difference of uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu and responses much better on low contrast sharp regions than the competitor metrics. Its benefits are shown both in defocus segmentation and focal stacking. With the obtained all-in-focus seed image, a scale-wise pooling method is proposed to construct its feature representation. Since the imaging settings in lab testing are well constrained, the seed objects in the acquired image can be assumed to have measureable scale and controllable scale variance. The proposed method utilizes real pixel scale information and allows for accurate comparison of seeds across scales. By cross-validation on our high quality seed image dataset, better identification rate (95%) was achieved compared with pre- trained convolutional-neural-network-based models (93.6%). It offers an alternative method for image based identification with all-in-focus object images of limited scale variance. The very first digital seed identification tool of its kind was built and deployed for test in the seed laboratory of Canadian food inspection agency (CFIA). The proposed focal stacking algorithm was employed to create all-in-focus images, whereas scale-wise pooling feature representation was used as the image signature. Throughput, workload, and identification rate were evaluated and seed analysts reported significantly lower mental demand (p = 0.00245) when using the provided tool compared with manual identification. Although the identification rate in practical test is only around 50%, I have demonstrated common mistakes that have been made in the imaging process and possible ways to deploy the tool to improve the recognition rate
    corecore