9,180 research outputs found

    Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics

    Get PDF
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such systems exhibit a number of features, such as randomness, no-cloning, and non-commutativity, which are peculiarities attributed to quantum mechanics (QM). After demonstrating many astonishing parallels to quantum behavior, we postulate an interpretation of quantum physics as the physics of systems with a single degree of freedom. We then show how a number of other quantum conundrum can be understood by considering the informational properties of the systems and also resolve the EPR paradox. In the present work, we assume that the formalism of the QM is correct and well-supported by experimental verification and concentrate on the interpretational aspects of the theory

    Quantum identification system

    Full text link
    A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus it can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.Comment: RevTeX, 4 postscript figures, 9 pages, submitted to Physical Review

    Publicness, Privacy and Confidentiality in the Single-Serving Quantum Broadcast Channel

    Full text link
    The 2-receiver broadcast channel is studied: a network with three parties where the transmitter and one of the receivers are the primarily involved parties and the other receiver considered as third party. The messages that are determined to be communicated are classified into public, private and confidential based on the information they convey. The public message contains information intended for both parties and is required to be decoded correctly by both of them, the private message is intended for the primary party only, however, there is no secrecy requirement imposed upon it meaning that it can possibly be exposed to the third party and finally the confidential message containing information intended exclusively for the primary party such that this information must be kept completely secret from the other receiver. A trade-off arises between the rates of the three messages, when one of the rates is high, the other rates may need to be reduced to guarantee the reliable transmission of all three messages. The encoder performs the necessary equivocation by virtue of dummy random numbers whose rate is assumed to be limited and should be considered in the trade-off as well. We study this trade-off in the one-shot regime of a quantum broadcast channel by providing achievability and (weak) converse regions. In the achievability, we prove and use a conditional version of the convex-split lemma as well as position-based decoding. By studying the asymptotic behaviour of our bounds, we will recover several well-known asymptotic results in the literature.Comment: 23 pages, 1 figure, journa

    Unbounded-error One-way Classical and Quantum Communication Complexity

    Full text link
    This paper studies the gap between quantum one-way communication complexity Q(f)Q(f) and its classical counterpart C(f)C(f), under the {\em unbounded-error} setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for {\em any} (total or partial) Boolean function ff, Q(f)=C(f)/2Q(f)=\lceil C(f)/2 \rceil, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining (again an exact) bound for the existence of (m,n,p)(m,n,p)-QRAC which is the nn-qubit random access coding that can recover any one of mm original bits with success probability p\geq p. We can prove that (m,n,>1/2)(m,n,>1/2)-QRAC exists if and only if m22n1m\leq 2^{2n}-1. Previously, only the construction of QRAC using one qubit, the existence of (O(n),n,>1/2)(O(n),n,>1/2)-RAC, and the non-existence of (22n,n,>1/2)(2^{2n},n,>1/2)-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200

    Toward Photon-Efficient Key Distribution over Optical Channels

    Get PDF
    This work considers the distribution of a secret key over an optical (bosonic) channel in the regime of high photon efficiency, i.e., when the number of secret key bits generated per detected photon is high. While in principle the photon efficiency is unbounded, there is an inherent tradeoff between this efficiency and the key generation rate (with respect to the channel bandwidth). We derive asymptotic expressions for the optimal generation rates in the photon-efficient limit, and propose schemes that approach these limits up to certain approximations. The schemes are practical, in the sense that they use coherent or temporally-entangled optical states and direct photodetection, all of which are reasonably easy to realize in practice, in conjunction with off-the-shelf classical codes.Comment: In IEEE Transactions on Information Theory; same version except that labels are corrected for Schemes S-1, S-2, and S-3, which appear as S-3, S-4, and S-5 in the Transaction

    Quantum channels and their entropic characteristics

    Full text link
    One of the major achievements of the recently emerged quantum information theory is the introduction and thorough investigation of the notion of quantum channel which is a basic building block of any data-transmitting or data-processing system. This development resulted in an elaborated structural theory and was accompanied by the discovery of a whole spectrum of entropic quantities, notably the channel capacities, characterizing information-processing performance of the channels. This paper gives a survey of the main properties of quantum channels and of their entropic characterization, with a variety of examples for finite dimensional quantum systems. We also touch upon the "continuous-variables" case, which provides an arena for quantum Gaussian systems. Most of the practical realizations of quantum information processing were implemented in such systems, in particular based on principles of quantum optics. Several important entropic quantities are introduced and used to describe the basic channel capacity formulas. The remarkable role of the specific quantum correlations - entanglement - as a novel communication resource, is stressed.Comment: review article, 60 pages, 5 figures, 194 references; Rep. Prog. Phys. (in press

    The Role of Relative Entropy in Quantum Information Theory

    Get PDF
    Quantum mechanics and information theory are among the most important scientific discoveries of the last century. Although these two areas initially developed separately it has emerged that they are in fact intimately related. In this review I will show how quantum information theory extends traditional information theory by exploring the limits imposed by quantum, rather than classical mechanics on information storage and transmission. The derivation of many key results uniquely differentiates this review from the "usual" presentation in that they are shown to follow logically from one crucial property of relative entropy. Within the review optimal bounds on the speed-up that quantum computers can achieve over their classical counter-parts are outlined using information theoretic arguments. In addition important implications of quantum information theory to thermodynamics and quantum measurement are intermittently discussed. A number of simple examples and derivations including quantum super-dense coding, quantum teleportation, Deutsch's and Grover's algorithms are also included.Comment: 40 pages, 11 figure

    The private capacity of quantum channels is not additive

    Full text link
    Recently there has been considerable activity on the subject of additivity of various quantum channel capacities. Here, we construct a family of channels with sharply bounded classical, hence private capacity. On the other hand, their quantum capacity when combined with a zero private (and zero quantum) capacity erasure channel, becomes larger than the previous classical capacity. As a consequence, we can conclude for the first time that the classical private capacity is non-additive. In fact, in our construction even the quantum capacity of the tensor product of two channels can be greater than the sum of their individual classical private capacities. We show that this violation occurs quite generically: every channel can be embedded into our construction, and a violation occurs whenever the given channel has larger entanglement assisted quantum capacity than (unassisted) classical capacity.Comment: 4+4 pages, 2 eps figures. V2 has title and abstract changed; its new structure reflects the final version of a main paper plus appendices containing mathematical detail
    corecore