2,127 research outputs found

    Entropic measures of individual mobility patterns

    Full text link
    Understanding human mobility from a microscopic point of view may represent a fundamental breakthrough for the development of a statistical physics for cognitive systems and it can shed light on the applicability of macroscopic statistical laws for social systems. Even if the complexity of individual behaviors prevents a true microscopic approach, the introduction of mesoscopic models allows the study of the dynamical properties for the non-stationary states of the considered system. We propose to compute various entropy measures of the individual mobility patterns obtained from GPS data that record the movements of private vehicles in the Florence district, in order to point out new features of human mobility related to the use of time and space and to define the dynamical properties of a stochastic model that could generate similar patterns. Moreover, we can relate the predictability properties of human mobility to the distribution of time passed between two successive trips. Our analysis suggests the existence of a hierarchical structure in the mobility patterns which divides the performed activities into three different categories, according to the time cost, with different information contents. We show that a Markov process defined by using the individual mobility network is not able to reproduce this hierarchy, which seems the consequence of different strategies in the activity choice. Our results could contribute to the development of governance policies for a sustainable mobility in modern cities

    Modeling Human Mobility Entropy as a Function of Spatial and Temporal Quantizations

    Get PDF
    The knowledge of human mobility is an integral component of several different branches of research and planning, including delay tolerant network routing, cellular network planning, disease prevention, and urban planning. The uncertainty associated with a person's movement plays a central role in movement predictability studies. The uncertainty can be quantified in a succinct manner using entropy rate, which is based on the information theoretic entropy. The entropy rate is usually calculated from past mobility traces. While the uncertainty, and therefore, the entropy rate depend on the human behavior, the entropy rate is not invariant to spatial resolution and sampling interval employed to collect mobility traces. The entropy rate of a person is a manifestation of the observable features in the person's mobility traces. Like entropy rate, these features are also dependent on spatio-temporal quantization. Different mobility studies are carried out using different spatio-temporal quantization, which can obscure the behavioral differences of the study populations. But these behavioral differences are important for population-specific planning. The goal of dissertation is to develop a theoretical model that will address this shortcoming of mobility studies by separating parameters pertaining to human behavior from the spatial and temporal parameters

    Potential destination discovery for low predictability individuals based on knowledge graph

    Full text link
    Travelers may travel to locations they have never visited, which we call potential destinations of them. Especially under a very limited observation, travelers tend to show random movement patterns and usually have a large number of potential destinations, which make them difficult to handle for mobility prediction (e.g., destination prediction). In this paper, we develop a new knowledge graph-based framework (PDPFKG) for potential destination discovery of low predictability travelers by considering trip association relationships between them. We first construct a trip knowledge graph (TKG) to model the trip scenario by entities (e.g., travelers, destinations and time information) and their relationships, in which we introduce the concept of private relationship for complexity reduction. Then a modified knowledge graph embedding algorithm is implemented to optimize the overall graph representation. Based on the trip knowledge graph embedding model (TKGEM), the possible ranking of individuals' unobserved destinations to be chosen in the future can be obtained by calculating triples' distance. Empirically. PDPFKG is tested using an anonymous vehicular dataset from 138 intersections equipped with video-based vehicle detection systems in Xuancheng city, China. The results show that (i) the proposed method significantly outperforms baseline methods, and (ii) the results show strong consistency with traveler behavior in choosing potential destinations. Finally, we provide a comprehensive discussion of the innovative points of the methodology
    corecore