31 research outputs found

    Covert Wireless Communication with a Poisson Field of Interferers

    Get PDF
    In this paper, we study covert communication in wireless networks consisting of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a Poisson field of interferers. Bob and Willie are subject to uncertain shot noise due to the ambient signals from interferers in the network. With the aid of stochastic geometry, we analyze the throughput of the covert communication between Alice and Bob subject to given requirements on the covertness against Willie and the reliability of decoding at Bob. We consider non-fading and fading channels. We analytically obtain interesting findings on the impacts of the density and the transmit power of the concurrent interferers on the covert throughput. That is, the density and the transmit power of the interferers have no impact on the covert throughput as long as the network stays in the interference-limited regime, for both the non-fading and the fading cases. When the interference is sufficiently small and comparable with the receiver noise, the covert throughput increases as the density or the transmit power of the concurrent interferers increases

    Covert Communication in UAV-Assisted Air-Ground Networks

    Get PDF
    Unmanned aerial vehicle (UAV) assisted communication is a promising technique for future wireless networks due to its characteristics of low cost and flexible deployment. However, the high possibility of line-of-sight (LoS) air-ground channels may result in a great risk of being attacked by malicious users. Especially compared to the encryption and physical layer security that prevent eavesdropping, covert communication aims at hiding the existence of transmission, which is able to satisfy the more critical requirement of security. Thus, in this article, we focus on the covert communication issues of UAV-assisted wireless networks. First, the preliminaries of secure communications including encryption, physical layer security and covert communication are discussed. Then, current works and typical applications of UAV in covert communications are demonstrated. We then propose two schemes to enhance the covertness of UAV-assisted networks for some typical scenarios. Specifically, to improve the covert rate in UAV-assisted data dissemination, an iterative algorithm is proposed to jointly optimize the time slot, transmit power and trajectory. For the covertness of ground-air communication, a friendly jammer is employed to confuse the wardens, where the location of the jammer, the jamming power and the legitimate transmit power are jointly optimized. Numerical results are presented to validate the performance of these two proposed schemes. Finally, several challenges and promising directions are pointed out

    Cooperative Jamming and Relay Selection for Covert Communications

    Full text link
    This paper investigates the covert communications via cooperative jamming and relay selection in a wireless relay system, where a source intends to transmit a message to its destination with the help of a selected relay, and a warden attempts to detect the existence of wireless transmissions from both the source and relay, while friendly jammers send jamming signals to prevent warden from detecting the transmission process. To this end, we first propose two relay selection schemes, namely random relay selection (RRS) and max-min relay selection (MMRS), as well as their corresponding cooperative jamming (CJ) schemes for ensuring covertness in the system. We then provide theoretical modeling for the covert rate performance under each relay selection scheme and its CJ scheme and further explore the optimal transmit power controls of both the source and relay for covert rate maximization. Finally, extensive simulation/numerical results are presented to validate our theoretical models and also to illustrate the covert rate performance of the relay system under cooperative jamming and relay selection
    corecore