7 research outputs found

    Application of gamified virtual laboratories as a preparation tool for civil engineering students

    Get PDF
    Practical laboratory sessions are essential for engineering education, demanding efficient use of limited time. In recent years, Virtual Reality (VR) technologies have introduced Virtual Laboratories (VLs), offering the potential to enhance students’ educational experience. Despite their potential, VLs are rarely utilised in civil engineering education. This research investigates the effectiveness of a gamified VL designed to simulate a concrete laboratory, aimed at better preparing students for experiments. A quasi-experimental study divided 92 students into control and experimental groups using cluster sampling. The control group received traditional lab training, while the experimental group engaged with the VL training environment. The results demonstrate that students using the VL spent significantly less time in the physical lab, exhibited improved competence in navigating lab setups, posed fewer questions about experimental procedures, and required less assistance from lab assistants. Notably, VL users spent 16% less time in the physical lab and needed fewer interventions from lab assistants. This study highlights the potential of VLs as potent tools for preparing engineering students for traditional lab sessions. Post-experiment surveys revealed a strong willingness among students in the experimental group to use VLs in future similar lab sessions, emphasising the positive impact of integrating VLs into engineering education.</p

    Using Augmented Reality in Remote Laboratories

    Get PDF
    This paper introduces the concept of “augmented reality” as a novel way to enhance visualization in remote laboratories for engineering education. In a typical remote experimentation session, students get access to a remote real plant located at the laboratory to carry out their assignments. Usually, the graphical user interface allows users to watch the equipment by video stream in live. However, in some cases, visual feedback by video stream could be enhanced by means of augmented reality techniques, which mix together in one image, the video stream and computer generated data. Such mixture produces an added value to remote experimentation, increasing the sense of presence and reality, and helping to understand much better the concepts under study. In this work, a Java-based approach to be used in the remote experimentation context for pedagogical purposes is presented. Firstly, a pure Java example is given to readers (including the source code) and then, a more sophisticated example using a Java-based open source tool known as Easy Java Simulations is introduced. This latter option takes advantage of a new developed component, called camimage, which is an easy-to-use visual element that allows authors to capture video stream from IP cameras in order to mix real images with computer generated graphics

    An Evaluation of Tertiary Educators’ Perception of Online Teaching Related Ergonomic Factors

    Get PDF
    The Aim of this research was to identify and assess ergonomic factors that affected educators in minerals, mining engineering and other educators’ experience with online teaching. Noise, insufficient time to complete all teaching related work, and lack of interaction with students were the main barriers identified. There was minimal difference in factors between minerals, mining engineering, and other educators’ experiences. Having good physical, organisational, cognitive, social, and environmental ergonomic factors facilitated online educators’ work

    Collaboration in remote access laboratories

    Get PDF
    Collaboration in Remote Access Laboratories (RALs) is becoming increasingly important in both engineering and science education institutions, and with RALs service providers as an enabler to improving accessibility, reducing costs, and improving time-efficiency and student support. Yet research on the use of collaboration in RALs, in general, is limited. There is a lack of exploratory and empirical studies that provide an in-depth and holistic investigation of the design process and factors that influence the adoption of collaboration in RALs. Therefore, this study makes a significant and original contribution to current theoretical and practice knowledge with regards to pedagogical change in engineering education through the use of technology and remote access laboratories, where social constructivist practices are applied, in particular, engineering students undertaking LAB work in a different mode or approach to the traditional learning environment. This research employed a case study qualitative method with triangulation of data. Data were collected through observation of students working collaboratively in the trial of collaborative learning in RALs using the Voltage Divider Experiment task, and follow-up, in-depth interviews, with inductive analysis and activity recoding. The research explored Kagan’s PIES that relate to outcomes of the collaborative approach, Dillenbourg’s four elements of collaborative learning and Doolittle’s eleven principles of learning experience design as the theoretical bases of the collaborative pedagogical design of the RALs learning experience. While confirming their continued relevance to this context for learning three new principles were shown to be essential to facilitate and enhance contemporary learning in RALs. These included the need to build in the leadership of the collaborative learning experience, ensure task authenticity and participants acquisition of the soft skills, including interpersonal skills and teamwork, and their relevance to the workplace (employability). Additionally, this research highlighted how learning in RALs facilitates formative assessment that feeds forward to better support students’ learning where they need to communicate with each other during the LAB work collaborative learning experiences, thus drawing attention to the need for careful academic planning. The study also addressed the limitations of collaboration in RALs. It investigated the extent to which engineering students accepted collaborative learning in RALs as a workable alternative to traditional in-LAB work. It identified the key factors that are likely to influence the adoption of such pedagogical change, including factors to be considered when planning to adopt collaboration in RALs. This resulted in the development of an instructional framework for collaboration in RALs. It was concluded that collaboration in RALs has the potential to improve LAB learning through the availability of remote access, the facilitation of a sense of reality (comparable to traditional hands-on experience) and the opportunity for group work, and the need for skills that more closely related to those needed in students’ future workplaces

    Limitations of Remote Laboratories in Control Engineering Education

    No full text
    Remote laboratories showed significant progress during last years. Their integration in engineering education had their justification in solving many logistic problems inherent to conventional labs. In control engineering education, shifting from hands-on experience to a remote experimentation modifies completely the learning environment, and the factors that could compromise the effectiveness of learning outcomes should be considered carefully. This short paper discusses a number of pedagogical limitations intrinsic to remote experimentation in control engineering education
    corecore