26,430 research outputs found

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    Biometric Authentication System on Mobile Personal Devices

    Get PDF
    We propose a secure, robust, and low-cost biometric authentication system on the mobile personal device for the personal network. The system consists of the following five key modules: 1) face detection; 2) face registration; 3) illumination normalization; 4) face verification; and 5) information fusion. For the complicated face authentication task on the devices with limited resources, the emphasis is largely on the reliability and applicability of the system. Both theoretical and practical considerations are taken. The final system is able to achieve an equal error rate of 2% under challenging testing protocols. The low hardware and software cost makes the system well adaptable to a large range of security applications

    Verification Under Increasing Dimensionality

    Get PDF
    Verification decisions are often based on second order statistics estimated from a set of samples. Ongoing growth of computational resources allows for considering more and more features, increasing the dimensionality of the samples. If the dimensionality is of the same order as the number of samples used in the estimation or even higher, then the accuracy of the estimate decreases significantly. In particular, the eigenvalues of the covariance matrix are estimated with a bias and the estimate of the eigenvectors differ considerably from the real eigenvectors. We show how a classical approach of verification in high dimensions is severely affected by these problems, and we show how bias correction methods can reduce these problems

    Closed-Loop Statistical Verification of Stochastic Nonlinear Systems Subject to Parametric Uncertainties

    Full text link
    This paper proposes a statistical verification framework using Gaussian processes (GPs) for simulation-based verification of stochastic nonlinear systems with parametric uncertainties. Given a small number of stochastic simulations, the proposed framework constructs a GP regression model and predicts the system's performance over the entire set of possible uncertainties. Included in the framework is a new metric to estimate the confidence in those predictions based on the variance of the GP's cumulative distribution function. This variance-based metric forms the basis of active sampling algorithms that aim to minimize prediction error through careful selection of simulations. In three case studies, the new active sampling algorithms demonstrate up to a 35% improvement in prediction error over other approaches and are able to correctly identify regions with low prediction confidence through the variance metric.Comment: 8 pages, submitted to ACC 201

    Higher order semiparametric frequentist inference with the profile sampler

    Get PDF
    We consider higher order frequentist inference for the parametric component of a semiparametric model based on sampling from the posterior profile distribution. The first order validity of this procedure established by Lee, Kosorok and Fine in [J. American Statist. Assoc. 100 (2005) 960--969] is extended to second-order validity in the setting where the infinite-dimensional nuisance parameter achieves the parametric rate. Specifically, we obtain higher order estimates of the maximum profile likelihood estimator and of the efficient Fisher information. Moreover, we prove that an exact frequentist confidence interval for the parametric component at level α\alpha can be estimated by the α\alpha-level credible set from the profile sampler with an error of order OP(n1)O_P(n^{-1}). Simulation studies are used to assess second-order asymptotic validity of the profile sampler. As far as we are aware, these are the first higher order accuracy results for semiparametric frequentist inference.Comment: Published in at http://dx.doi.org/10.1214/07-AOS523 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Bayesian approach to the study of white dwarf binaries in LISA data: The application of a reversible jump Markov chain Monte Carlo method

    Full text link
    The Laser Interferometer Space Antenna (LISA) defines new demands on data analysis efforts in its all-sky gravitational wave survey, recording simultaneously thousands of galactic compact object binary foreground sources and tens to hundreds of background sources like binary black hole mergers and extreme mass ratio inspirals. We approach this problem with an adaptive and fully automatic Reversible Jump Markov Chain Monte Carlo sampler, able to sample from the joint posterior density function (as established by Bayes theorem) for a given mixture of signals "out of the box'', handling the total number of signals as an additional unknown parameter beside the unknown parameters of each individual source and the noise floor. We show in examples from the LISA Mock Data Challenge implementing the full response of LISA in its TDI description that this sampler is able to extract monochromatic Double White Dwarf signals out of colored instrumental noise and additional foreground and background noise successfully in a global fitting approach. We introduce 2 examples with fixed number of signals (MCMC sampling), and 1 example with unknown number of signals (RJ-MCMC), the latter further promoting the idea behind an experimental adaptation of the model indicator proposal densities in the main sampling stage. We note that the experienced runtimes and degeneracies in parameter extraction limit the shown examples to the extraction of a low but realistic number of signals.Comment: 18 pages, 9 figures, 3 tables, accepted for publication in PRD, revised versio
    corecore