5 research outputs found

    Lightweighted and energy-aware MIKEY-Ticket for e-health applications in the context of internet of things

    Get PDF
    E-health applications have emerged as a promising approach to provide unobtrusive and customizable support to elderly and frail people based on their situation and circumstances. However, due to limited resources available in such systems and data privacy concerns, security issues constitute a major obstacle to their safe deployment. To secure e-health communications, key management protocols play a vital role in the security process. Nevertheless, current e-health systems are unable to run existing standardized key management protocols due to their limited energy power and computational capabilities. In this paper, we introduce two solutions to tailor MIKEY-Ticket protocol to constrained environments. Firstly, we propose a new header compression scheme to reduce the size of MIKEYs header from 12 Bytes to 3 Bytes in the best compression case. Secondly, we present a new exchange mode to reduce the number of exchanged messages from six to four. We have used a formal validation method to evaluate and validate the security properties of our new tailored MIKEY-Ticket protocol. In addition, we have evaluated both communication and computational costs to demonstrate the energy gain. The results show a decrease in MIKEY-Ticket overhead and a considerable energy gain without compromising its security properties

    Securing IoT-based collaborative applications using a new compressed and distributed MIKEY mode

    Get PDF
    International audienceMultimedia internet keying protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new compressed and distributed MIKEY mode applied to a collaborative internet of things context. A set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the MIKEY pre-shared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY's header from 12 bytes to 3 bytes in the best compression case. To assess our approach, we performed a detailed security analysis using a formal validation tool (i.e., Avispa). In addition, we performed an energy evaluation of both communicational and computational costs. The obtained results show that our proposed mode is energy preserving whereas its security properties are preserved untouched

    Securing IoT-based collaborative applications using a new compressed and distributed MIKEY mode

    Get PDF
    International audienceMultimedia internet keying protocol (MIKEY) aims at establishing secure credentials between two communicating entities. However, existing MIKEY modes fail to meet the requirements of low-power and low-processing devices. To address this issue, we combine two previously proposed approaches to introduce a new compressed and distributed MIKEY mode applied to a collaborative internet of things context. A set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the MIKEY pre-shared mode is used in the constrained part of network, while the public key mode is used in the unconstrained part of the network. Furthermore, to mitigate the communication cost we introduce a new header compression scheme that reduces the size of MIKEY's header from 12 bytes to 3 bytes in the best compression case. To assess our approach, we performed a detailed security analysis using a formal validation tool (i.e., Avispa). In addition, we performed an energy evaluation of both communicational and computational costs. The obtained results show that our proposed mode is energy preserving whereas its security properties are preserved untouched

    Fault-tolerant and Scalable Key Management Protocol for IoT-based Collaborative Groups

    Get PDF
    International audienceSecuring collaborative applications relies heavily on the underlying group key management protocols. Designing these protocols ischallenging, especially in the context of the Internet of Things (IoT). Indeed, the presence of heterogeneous and dynamic members within the collaborative groups usually involves resource constrained entities, which require energy-aware protocols to manage frequent arrivals and departures of members. Moreover, both fault tolerance and scalability are sought for sensitive and large collaborative groups. To address these challenges, we propose to enhance our previously proposed protocol (i.e. DBGK) with polynomial computations. In fact, our contribution in this paper, allows additional controllers to be included with no impact on storage cost regarding constrained members. To assess our protocol called DsBGK, we conducted extensive simulations. Results confirmed that DsBGK achieves a better scalability and fault tolerance compared to DBGK. In addition, energy consumption induced by group key rekeying has been reduced

    Internet of Things and Distributed Denial of Service as Risk Factors in Information Security

    Get PDF
    Society is increasingly dependent on technology and an example of this is the constant monitoring of large cities, which has become common and the future trend is for it to increase based on what happened with the COVID-19 pandemic. This monitoring brings with it a series of problems at the information security level at different levels or levels. Based on this fact, it addresses how the Internet of Things (IoT) can be subject to potential distributed denial of service (DDoS) attacks and the danger it poses to society. In this sense, other types of vulnerabilities are exposed, such as crypto hacking, advanced persistent threats (APT) and ransomware, which use artificial intelligence to improve their attack techniques. This poses a potential risk to society from cybersecurity regarding the use and manipulation of information, either by governments, the military and organized criminal groups, de facto violating human rights
    corecore