79 research outputs found

    Lightly supervised alignment of subtitles on multi-genre broadcasts

    Get PDF
    This paper describes a system for performing alignment of subtitles to audio on multigenre broadcasts using a lightly supervised approach. Accurate alignment of subtitles plays a substantial role in the daily work of media companies and currently still requires large human effort. Here, a comprehensive approach to performing this task in an automated way using lightly supervised alignment is proposed. The paper explores the different alternatives to speech segmentation, lightly supervised speech recognition and alignment of text streams. The proposed system uses lightly supervised decoding to improve the alignment accuracy by performing language model adaptation using the target subtitles. The system thus built achieves the third best reported result in the alignment of broadcast subtitles in the Multi–Genre Broadcast (MGB) challenge, with an F1 score of 88.8%. This system is available for research and other non–commercial purposes through webASR, the University of Sheffield’s cloud–based speech technology web service. Taking as inputs an audio file and untimed subtitles, webASR can produce timed subtitles in multiple formats, including TTML, WebVTT and SRT

    The 2015 Sheffield System for Transcription of Multi–Genre Broadcast Media

    Get PDF
    We describe the University of Sheffield system for participation in the 2015 Multi-Genre Broadcast (MGB) challenge task of transcribing multi-genre broadcast shows. Transcription was one of four tasks proposed in the MGB challenge, with the aim of advancing the state of the art of automatic speech recognition, speaker diarisation and automatic alignment of subtitles for broadcast media. Four topics are investigated in this work: Data selection techniques for training with unreliable data, automatic speech segmentation of broadcast media shows, acoustic modelling and adaptation in highly variable environments, and language modelling of multi-genre shows. The final system operates in multiple passes, using an initial unadapted decoding stage to refine segmentation, followed by three adapted passes: a hybrid DNN pass with input features normalised by speaker-based cepstral normalisation, another hybrid stage with input features normalised by speaker feature-MLLR transformations, and finally a bottleneck-based tandem stage with noise and speaker factorisation. The combination of these three system outputs provides a final error rate of 27.5% on the official development set, consisting of 47 multi-genre shows

    Latent Dirichlet Allocation Based Organisation of Broadcast Media Archives for Deep Neural Network Adaptation

    Get PDF
    This paper presents a new method for the discovery of latent domains in diverse speech data, for the use of adaptation of Deep Neural Networks (DNNs) for Automatic Speech Recognition. Our work focuses on transcription of multi-genre broadcast media, which is often only categorised broadly in terms of high level genres such as sports, news, documentary, etc. However, in terms of acoustic modelling these categories are coarse. Instead, it is expected that a mixture of latent domains can better represent the complex and diverse behaviours within a TV show, and therefore lead to better and more robust performance. We propose a new method, whereby these latent domains are discovered with Latent Dirichlet Allocation, in an unsupervised manner. These are used to adapt DNNs using the Unique Binary Code (UBIC) representation for the LDA domains. Experiments conducted on a set of BBC TV broadcasts, with more than 2,000 shows for training and 47 shows for testing, show that the use of LDA-UBIC DNNs reduces the error up to 13% relative compared to the baseline hybrid DNN models

    Acoustic Adaptation to Dynamic Background Conditions with Asynchronous Transformations

    Get PDF
    This paper proposes a framework for performing adaptation to complex and non-stationary background conditions in Automatic Speech Recognition (ASR) by means of asynchronous Constrained Maximum Likelihood Linear Regression (aCMLLR) transforms and asynchronous Noise Adaptive Training (aNAT). The proposed method aims to apply the feature transform that best compensates the background for every input frame. The implementation is done with a new Hidden Markov Model (HMM) topology that expands the usual left-to-right HMM into parallel branches adapted to different background conditions and permits transitions among them. Using this, the proposed adaptation does not require ground truth or previous knowledge about the background in each frame as it aims to maximise the overall log-likelihood of the decoded utterance. The proposed aCMLLR transforms can be further improved by retraining models in an aNAT fashion and by using speaker-based MLLR transforms in cascade for an efficient modelling of background effects and speaker. An initial evaluation in a modified version of the WSJCAM0 corpus incorporating 7 different background conditions provides a benchmark in which to evaluate the use of aCMLLR transforms. A relative reduction of 40.5% in Word Error Rate (WER) was achieved by the combined use of aCMLLR and MLLR in cascade. Finally, this selection of techniques was applied in the transcription of multi-genre media broadcasts, where the use of aNAT training, aCMLLR transforms and MLLR transforms provided a relative improvement of 2–3%

    Automatic transcription of multi-genre media archives

    Get PDF
    This paper describes some recent results of our collaborative work on developing a speech recognition system for the automatic transcription or media archives from the British Broadcasting Corporation (BBC). The material includes a wide diversity of shows with their associated metadata. The latter are highly diverse in terms of completeness, reliability and accuracy. First, we investigate how to improve lightly supervised acoustic training, when timestamp information is inaccurate and when speech deviates significantly from the transcription, and how to perform evaluations when no reference transcripts are available. An automatic timestamp correction method as well as a word and segment level combination approaches between the lightly supervised transcripts and the original programme scripts are presented which yield improved metadata. Experimental results show that systems trained using the improved metadata consistently outperform those trained with only the original lightly supervised decoding hypotheses. Secondly, we show that the recognition task may benefit from systems trained on a combination of in-domain and out-of-domain data. Working with tandem HMMs, we describe Multi-level Adaptive Networks, a novel technique for incorporating information from out-of domain posterior features using deep neural network. We show that it provides a substantial reduction in WER over other systems including a PLP-based baseline, in-domain tandem features, and the best out-of-domain tandem features.This research was supported by EPSRC Programme Grant EP/I031022/1 (Natural Speech Technology).This paper was presented at the First Workshop on Speech, Language and Audio in Multimedia, August 22-23, 2013; Marseille. It was published in CEUR Workshop Proceedings at http://ceur-ws.org/Vol-1012/

    Improving lightly supervised training for broadcast transcription

    Get PDF
    This paper investigates improving lightly supervised acoustic model training for an archive of broadcast data. Standard lightly supervised training uses automatically derived decoding hypotheses using a biased language model. However, as the actual speech can deviate significantly from the original programme scripts that are supplied, the quality of standard lightly supervised hypotheses can be poor. To address this issue, word and segment level combination approaches are used between the lightly supervised transcripts and the original programme scripts which yield improved transcriptions. Experimental results show that systems trained using these improved transcriptions consistently outperform those trained using only the original lightly supervised decoding hypotheses. This is shown to be the case for both the maximum likelihood and minimum phone error trained systems.The research leading to these results was supported by EPSRC Programme Grant EP/I031022/1 (Natural Speech Technology).This is the accepted manuscript version. The final version is available at http://www.isca-speech.org/archive/interspeech_2013/i13_2187.html

    Lattice-based lightly-supervised acoustic model training

    Get PDF
    In the broadcast domain there is an abundance of related text data and partial transcriptions, such as closed captions and subtitles. This text data can be used for lightly supervised training, in which text matching the audio is selected using an existing speech recognition model. Current approaches to light supervision typically filter the data based on matching error rates between the transcriptions and biased decoding hypotheses. In contrast, semi-supervised training does not require matching text data, instead generating a hypothesis using a background language model. State-of-the-art semi-supervised training uses lattice-based supervision with the lattice-free MMI (LF-MMI) objective function. We propose a technique to combine inaccurate transcriptions with the lattices generated for semi-supervised training, thus preserving uncertainty in the lattice where appropriate. We demonstrate that this combined approach reduces the expected error rates over the lattices, and reduces the word error rate (WER) on a broadcast task.Comment: Proc. INTERSPEECH 201

    A SYSTEM FOR AUTOMATIC ALIGNMENT OF BROADCAST MEDIA CAPTIONS USING WEIGHTED FINITE-STATE TRANSDUCERS

    Get PDF
    ABSTRACT We describe our system for alignment of broadcast media captions in the 2015 MGB Challenge. A precise time alignment of previously-generated subtitles to media data is important in the process of caption generation by broadcasters. However, this task is challenging due to the highly diverse, often noisy content of the audio, and because the subtitles are frequently not a verbatim representation of the actual words spoken. Our system employs a two-pass approach with appropriately constrained weighted finite state transducers (WFSTs) to enable good alignment even when the audio quality would be challenging for conventional ASR. The system achieves an f-score of 0.8965 on the MGB Challenge development set

    A system for automatic alignment of broadcast media captions using weighted finite-state transducers

    Get PDF
    corecore