492 research outputs found

    Subgraphs with Restricted Degrees of their Vertices in Large Polyhedral Maps on Compact Two-manifolds

    Get PDF
    AbstractLet k≥ 2, be an integer and M be a closed two-manifold with Euler characteristic χ(M) ≤ 0. We prove that each polyhedral map G onM , which has at least (8 k2+ 6 k− 6)|χ (M)| vertices, contains a connected subgraph H of order k such that every vertex of this subgraph has, in G, the degree at most 4 k+ 4. Moreover, we show that the bound 4k+ 4 is best possible. Fabrici and Jendrol’ proved that for the sphere this bound is 10 ifk= 2 and 4 k+ 3 if k≥ 3. We also show that the same holds for the projective plane

    On the Roman Bondage Number of Graphs on surfaces

    Full text link
    A Roman dominating function on a graph GG is a labeling f:V(G)→{0,1,2}f : V(G) \rightarrow \{0, 1, 2\} such that every vertex with label 00 has a neighbor with label 22. The Roman domination number, γR(G)\gamma_R(G), of GG is the minimum of Σv∈V(G)f(v)\Sigma_{v\in V (G)} f(v) over such functions. The Roman bondage number bR(G)b_R(G) is the cardinality of a smallest set of edges whose removal from GG results in a graph with Roman domination number not equal to γR(G)\gamma_R(G). In this paper we obtain upper bounds on bR(G)b_{R}(G) in terms of (a) the average degree and maximum degree, and (b) Euler characteristic, girth and maximum degree. We also show that the Roman bondage number of every graph which admits a 22-cell embedding on a surface with non negative Euler characteristic does not exceed 1515.Comment: 5 page

    Gibbs and Quantum Discrete Spaces

    Get PDF
    Gibbs measure is one of the central objects of the modern probability, mathematical statistical physics and euclidean quantum field theory. Here we define and study its natural generalization for the case when the space, where the random field is defined is itself random. Moreover, this randomness is not given apriori and independently of the configuration, but rather they depend on each other, and both are given by Gibbs procedure; We call the resulting object a Gibbs family because it parametrizes Gibbs fields on different graphs in the support of the distribution. We study also quantum (KMS) analog of Gibbs families. Various applications to discrete quantum gravity are given.Comment: 37 pages, 2 figure

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde
    • …
    corecore