1,727,819 research outputs found

    Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams

    Get PDF
    The aim is to study the impact toughness of two types of entangled sandwich materials (heavy and light) with the help of vibration testing. A simple case of symmetrical impacts is studied in this article as no literature is available regarding impact tests on entangled sandwich materials. The variation of modal parameters with two levels of damage (BVID and Damage not apparent on the surface) is studied. Vibration test results show that the light entangled specimens possessing good damping capabilities seem more sensitive to impact damage than the heavy ones. Furthermore, damping is found to be more sensitive to damage than the stiffness variations, so it is reasonable to assume that damping may be used instead of natural frequency as a damage indicator tool for structural health monitoring purposes

    Chemical investigation of light induced DNA bipyrimidine damage and repair

    Get PDF
    In all organisms, genetic information is stored in DNA and RNA. Both of these macromolecules are damaged by many exogenous and endogenous events, with UV irradiation being one of the major sources of damage. The major photolesions formed are the cyclobutane pyrimidine dimers (CPD), pyrimidine–pyrimidone-(6-4)-photoproducts, Dewar valence isomers and, for dehydrated spore DNA, 5-(a-thyminyl)-5,6-dihydrothymine (SP). In order to be able to investigate how nature’s repair and tolerance mechanisms protect the integrity of genetic information, oligonucleotides containing sequence and site-specific UV lesions are essential. This tutorial review provides an overview of synthetic procedures by which these oligonucleotides can be generated, either through phosphoramidite chemistry or direct irradiation of DNA. Moreover, a brief summary on their usage in analysing repair and tolerance processes as well as their biological effects is provided

    Damage spreading and coupling in Markov chains

    Full text link
    In this paper, we relate the coupling of Markov chains, at the basis of perfect sampling methods, with damage spreading, which captures the chaotic nature of stochastic dynamics. For two-dimensional spin glasses and hard spheres we point out that the obstacle to the application of perfect-sampling schemes is posed by damage spreading rather than by the survey problem of the entire configuration space. We find dynamical damage-spreading transitions deeply inside the paramagnetic and liquid phases, and show that critical values of the transition temperatures and densities depend on the coupling scheme. We discuss our findings in the light of a classic proof that for arbitrary Monte Carlo algorithms damage spreading can be avoided through non-Markovian coupling schemes.Comment: 6 pages, 8 figure

    Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis

    Get PDF
    Plant stress caused by extreme environmental conditions is already a principal reason for yield reduction in crops. The threat of global environment change makes it increasingly important to generate crop plants that will withstand such conditions. Stress, particularly stress caused by increased sunlight, leads to the production of reactive oxygen species that cause photo-oxidative cell damage. Carotenoids, which are present in the membranes of all photosynthetic organisms, help protect against such light-dependent oxidative damage. In plants, the xanthophyll cycle (the reversible interconversion of two carotenoids, violaxanthin and zeaxanthin) has a key photoprotective role and is therefore a promising target for genetic engineering to enhance stress tolerance. Here we show that in Arabidopsis thaliana overexpression of the chyB gene that encodes -carotene hydroxylase—an enzyme in the zeaxanthin biosynthetic pathway—causes a specific twofold increase in the size of the xanthophyll cycle pool. The plants are more tolerant to conditions of high light and high temperature, as shown by reduced leaf necrosis, reduced production of the stress indicator anthocyanin and reduced lipid peroxidation. Stress protection is probably due to the function of zeaxanthin in preventing oxidative damage of membranes

    Effects of Light and Nutrients on Tomato Plant Compensation for Herbivory by \u3ci\u3eManduca Sexta\u3c/i\u3e (Lepidoptera: Sphingidae)

    Get PDF
    This preliminary study examined how two resources (light and nutrients) influence the ability of tomato plants to show growth compensation for defoliation by the tobacco homworm (Manduca sexta). Growth rate and biomass of plants grown under high and low levels of light and nutrients, and exposed to 4 levels of defoliation by Manduca sexta were measured. Nutrients affected plant growth rate much more strongly than did light. Light and nutrients, however, each influenced how herbivory affected plant growth. Defoliation significantly decreased growth rate only under conditions of low light and high nutrients. Biomass, on the other hand. was low under all resource treatments except high levels of both light and nutrients, and defoliation significantly decreased biomass only under high levels of both resources. Thus, plants appeared to compensate for damage. in terms of biomass, only under conditions of either low light and/or low nutrients

    Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light.

    Get PDF
    Water treatment systems frequently use strong oxidants or UV light to degrade chemicals that pose human health risks. Unfortunately, these treatments can result in the unintended transformation of organic contaminants into toxic products. We report an unexpected reaction through which exposure of phenolic compounds to hydroxyl radicals (•OH) or UV light results in the formation of toxic α,β-unsaturated enedials and oxoenals. We show that these transformation products damage proteins by reacting with lysine and cysteine moieties. We demonstrate that phenolic compounds react with •OH produced by the increasingly popular UV/hydrogen peroxide (H2O2) water treatment process or UV light to form toxic enedials and oxoenals. In addition to raising concerns about potential health risks of oxidative water treatment, our findings suggest the potential for formation of these toxic compounds in sunlit surface waters, atmospheric water, and living cells. For the latter, our findings may be particularly relevant to efforts to understand cellular damage caused by in vivo production of reactive oxygen species. In particular, we demonstrate that exposure of the amino acid tyrosine to •OH yields an electrophilic enedial product that undergoes cross-linking reaction with both lysine and cysteine residues
    corecore