6,670 research outputs found

    Luminescence in sulfides : a rich history and a bright future

    Get PDF
    Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    Three-photon excitation of quantum dots with a telecom band ultrafast fiber laser

    Get PDF
    We demonstrate three-photon excitation in quantum dots with a mode-locked fiber laser operating in the telecommunications band. We compare spectra and intensity dependence of fluorescence from one- and three-photon excitation of commercially available 640 nm quantum dots, using a 372 nm diode laser for one-photon excitation and 116 fs pulses from a mode-locked fiber laser with a center wavelength of 1575 nm for three-photon excitation.Comment: 6 pages, 3 figure

    Gb/s visible light communications with colloidal quantum dot color converters

    Get PDF
    This paper reports the utilization of colloidal semiconductor quantum dots as color converters for Gb/s visible light communications. We briefly review the design and properties of colloidal quantum dots and discuss them in the context of fast color conversion of InGaN light sources, in particular in view of the effects of self-absorption. This is followed by a description of a CQD/polymer composite format of color converters. We show samples of such color-converting composite emitting at green, yellow/orange and red wavelengths, and combine these with a blueemitting microsize LED to form hybrid sources for wireless visible light communication links. In this way data rates up to 1 Gb/s over distances of a few tens of centimeters have been demonstrated. Finally, we broaden the discussion by considering the possibility for wavelength division multiplexing as well as the use of alternative colloidal semiconductor nanocrystals

    Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

    Get PDF
    Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells

    InP nanocrystals on silicon for optoelectronic applications

    Full text link
    One of the solutions enabling performance progress, which can overcome the downsizing limit in silicon technology, is the integration of different functional optoelectronic devices within a single chip. Silicon with its indirect band gap has poor optical properties, which is its main drawback. Therefore, a different material has to be used for the on-chip optical interconnections, e.g. a direct band gap III-V compound semiconductor material. In the paper we present the synthesis of single crystalline InP nanodots (NDs) on silicon using combined ion implantation and millisecond flash lamp annealing techniques. The optical and microstructural investigations reveal the growth of high-quality (100)-oriented InP nanocrystals. The current-voltage measurements confirm the formation of an n-p heterojunction between the InP NDs and silicon. The main advantage of our method is its integration with large-scale silicon technology, which allows applying it for Si-based optoelectronic devices.Comment: 13 pages, 7 figure

    Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    Get PDF
    corecore