18,526 research outputs found

    Contrastive Learning for Lifted Networks

    Full text link
    In this work we address supervised learning of neural networks via lifted network formulations. Lifted networks are interesting because they allow training on massively parallel hardware and assign energy models to discriminatively trained neural networks. We demonstrate that the training methods for lifted networks proposed in the literature have significant limitations and show how to use a contrastive loss to address those limitations. We demonstrate that this contrastive training approximates back-propagation in theory and in practice and that it is superior to the training objective regularly used for lifted networks.Comment: 9 pages, BMVC 201

    Lifted Regression/Reconstruction Networks

    Get PDF
    In this work we propose lifted regression/reconstruction networks(LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore—in contrast to standard feed-forward neural networks—allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learnin

    Lifted Regression/Reconstruction Networks

    Get PDF
    In this work we propose lifted regression/reconstruction networks (LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore---in contrast to standard feed-forward neural networks---allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learning.Comment: 12 pages, 8 figure

    Learning predictive categories using lifted relational neural networks

    Get PDF
    Lifted relational neural networks (LRNNs) are a flexible neural-symbolic framework based on the idea of lifted modelling. In this paper we show how LRNNs can be easily used to specify declaratively and solve learning problems in which latent categories of entities, properties and relations need to be jointly induced

    Stacked structure learning for lifted relational neural networks

    Get PDF
    Lifted Relational Neural Networks (LRNNs) describe relational domains using weighted first-order rules which act as templates for constructing feed-forward neural networks. While previous work has shown that using LRNNs can lead to state-of-the-art results in various ILP tasks, these results depended on hand-crafted rules. In this paper, we extend the framework of LRNNs with structure learning, thus enabling a fully automated learning process. Similarly to many ILP methods, our structure learning algorithm proceeds in an iterative fashion by top-down searching through the hypothesis space of all possible Horn clauses, considering the predicates that occur in the training examples as well as invented soft concepts entailed by the best weighted rules found so far. In the experiments, we demonstrate the ability to automatically induce useful hierarchical soft concepts leading to deep LRNNs with a competitive predictive power
    • …
    corecore