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Abstract

In this work we propose lifted regression/reconstruction networks (LRRNs), which
combine lifted neural networks with a guaranteed Lipschitz continuity property for the
output layer. Lifted neural networks explicitly optimize an energy model to infer the unit
activations and therefore—in contrast to standard feed-forward neural networks—allow
bidirectional feedback between layers. So far lifted neural networks have been mod-
elled around standard feed-forward architectures. We propose to take further advantage
of the feedback property by letting the layers simultaneously perform regression and
reconstruction. The resulting lifted network architecture allows to control the desired
amount of Lipschitz continuity, which is an important feature to obtain adversarially
robust regression and classification methods. We analyse and numerically demonstrate
applications for unsupervised and supervised learning.

1 Introduction
Deep neural networks (DNNs) are very powerful and expressive tools in machine learning
to solve many classification and regression tasks. Due to their expressiveness and highly
non-linear properties, DNNs are generally very sensitive to minor perturbations of the input,
which makes them unreliable in e.g. safety-critical applications. A quickly growing body of
works aims to obtain robust DNNs either by design or by a dedicated training approach such
as adversarial training. In this work the main goal is to obtain powerful regression methods
that are robust to input perturbations by design. This is achieved by controlling the Lipschitz
continuity of the input-to-output mapping, which puts limits on the sensitivity of a mapping
with respect to bounded input perturbations (w.r.t. the Euclidean norm). Thus, robustness of
the prediction is guaranteed even for unseen test samples and need not to be established via
an expensive verification procedure.

We further step away from pure feed-forward architectures for neural networks, but base
our classification and regression approach on layered energy-based models, which enable
bidirectional feedback between layers when determining the internal network activations.
Feed-forward DNNs can be obtained from such layered energy models as a limit case, hence
energy-based models can be considered as powerful as regular DNNs. To our knowledge the
Lipschitz properties of such energy-based models have not been considered in the literature.
We propose a simple energy model that guarantees non-expansiveness of the mapping from
input to output activations essentially by symmetrizing an energy model. Consequently each
layer in the underlying energy has a regression and a reconstruction component. In contrast
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to existing literature on Lipschitz continuous DNNs, no difficult-to-enforce constraints on
the weight matrices (such as orthonormality) are needed in our framework.

2 Related Work

Lifted DNNs Lifted neural networks introduce an explicit set of unknowns for the internal
network activations, and inference is performed by minimization (or marginalization) w.r.t.
the network activations. Hence, they are based on a different computational model than
regular feed-forward networks. Lifted neural networks can be traced back to two somewhat
different origins. First, they can be seen as instances of more general undirected energy-
based models rooted in (restricted) Boltzmann machines [1, 13, 29] and a contrastive learning
paradigm, where the learning signal is induced by the energy difference between fully and
partially clamped visible units (e.g. [23]). It has been demonstrated, that back-propagation
is a limit case of contrastive learning [28, 37, 39] for appropriate layered energy models.

A more recent motivation for lifted networks is the ability of highly parallel training
procedures [5], which proposes a quadratic relaxation for the feedforward computation in
a DNN, and using modern optimization methods such as ADMM [31]. The ability to use
convex energy models for e.g. ReLU networks is connected with re-interpreting the ReLU
operation as projection to the non-negative real line [2, 40]. The convex energy models used
in our work imitate feedforward networks only in so called weak feedback setting. [11, 19]
propose (block-convex but not jointly convex) lifted network models that aim to replicate the
standard feed-forward pass in a DNN for a general class of activation functions.

DNN Robustness The discovery of the intrinsic brittleness of predictions made by deep
neural networks [30] has led to a significant amount of research on better constructing adver-
sarial inputs (e.g. [4, 9, 17, 20, 22]) and making neural-network based classifiers more robust
with respect to adversarial perturbations (e.g. by using a robust training loss [20, 30, 35] or
Lipschitz regularization [6, 24, 32, 38]). Determining adversarial perturbation amounts to
minimizing a highly non-linear and non-convex optimization problem, and therefore an ex-
plicit search for adversarial examples cannot certify robustness of the network. Recently,
it was empirically shown, that adversarial training is insufficient by using computationally
expensive attacks [24, 33] and therefore leads to a false sense of robustness. These results
strongly motivate the design of intrinsically robust neural networks architectures. Scattering
networks [3, 21] are wavelet-based, non-trainable feature representations combining Lip-
schitz continuity with transformation invariance. Parseval networks [6] aim for intrinsic
1-Lipschitz continuity of a trained DNN by favoring orthonormal weight matrices. Non-
expansive networks [24] propose to utilize (approximately) distance preserving network lay-
ers, and Lipschitz margin training [32] estimates the Lipschitz constant during the training
phase and uses it to adjust a required classification margin.

A complementary approach is to verify robustness of a DNN for a particular input sam-
ple via robust optimization techniques. Networks with general piece-wise linear activation
functions can be verified using linear programming relaxations [34, 35], which emerge im-
mediately from exact, but not scalable, mixed integer-linear programs [8, 15]. Stronger
(but computationally demanding) relaxations can be obtained via semi-definite program-
ming [25, 26].
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3 Lifted Regression/Reconstruction Networks (LRRN)
In this section we propose a lifted network energy that is by construction Lipschitz con-
tinuous with a user-specified Lipschitz constant. In contrast to lifted networks proposed
in [11, 19, 39, 40] aiming to mimic the behavior of feed-forward DNNs, we add a recon-
structive term to the network energy model. Thus, we propose to use a network energy of
the form

E(z;x) =
1
2 ∑

L−1
k=0

(
‖zk+1−Wkzk−bk‖2 +βk

∥∥W T
k zk+1− zk− ck

∥∥2
)

(1)

subject to z0 = x and zk ∈ Ck for k = 1, . . . ,L. Each Ck ⊆Rdk , k = 1, . . . ,L, is a closed convex
set, which can be used to introduce non-linear behaviour. The choices Ck = Rdk (linear
activation function) and Ck = Rdk

≥0 (ReLU-like activation function) are of particular interest.
Obtaining a prediction from the energy models requires computing the activations z∗(x)=

argminz E(z;x) by solving a (strictly) convex program. The last layer zL is considered the
output layer, hence the mapping x 7→ z∗L(x) corresponds to the network’s prediction function.

The parameters βk ≥ 0, k = 1, . . . ,L, control the Lipschitz constant of z∗L(x) as we will
see shortly. Setting βk = 0 for all k yields a pure forward regression network resembling
standard feed-forward DNNs [39]. We also tie the forward (regression) weights Wk and the
reconstructive weights W T

k , but not the biases bk and ck as tying them has no impact on
Lipschitz continuity.

3.1 Motivation: Lipschitz continuity of linear 1-layer LRRNs
We consider first an LRRN with a single layer and no constraint on the latent variables. Thus,
the energy model in Eq. 1 reduces to

E(z;x) = 1
2 ‖z−Wx−b‖2 + β

2

∥∥W T z− x− c
∥∥2

. (2)

The first order optimality condition for z∗ for given x is

(I+βWW T )z∗ =Wx+b+βWx+βWc = (1+β )Wx+b+βWc.

Thus, z∗(x) is explicitly given by

z∗(x) := (1+β )(I+βWW T )−1Wx+(I+βWW T )−1(b+βWc)︸ ︷︷ ︸
=:c̃

. (3)

Using the singular value decomposition of W =UΣV T , and therefore I+βWW T =U(I+
βΣ2)UT , this translates to

z∗(x) =U(1+β )(I+βΣ
2)−1

ΣV T x+b =: Aβ x+ c̃

The diagonal matrix (1+β )(I+βΣ2)−1Σ has the elements (1+β )σi/(1+βσ2
i )≥ 0 on its

main diagonal. The mapping fβ : R≥0→ R≥0 with

fβ (σ) :=
(1+β )σ

1+βσ2
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has a single maximum at σ =
√

1/β . Thus,

fβ (
√

1/β ) =
(1+β )β−1/2

1+ββ−1 =
(1+β )β−1/2

2
=

β 1/2 +β−1/2

2

This means that the singular values of Aβ are in [0,(β 1/2 + β−1/2)/2], and the mapping
x 7→ Aβ x + c̃ is Lipschitz continuous with constant (β 1/2 + β−1/2)/2 (which is an upper
bound on the operator norm of Aβ ). With β = 1 one has ‖Aβ‖2 ≤ 1.

Remark 1. The operator norm of Aβ can be explicitly stated as maxi{ (1+β )σi
1+βσ2

i
}, where (σi)i

are the singular values of W . The maximum is attained for the singular value σi that is
“closest” (in a certain sense) to 1/β . If β → 0, then the largest of {σi} yields the operator
norm. Therefore in this setting the stated Lipschitz constant is explicitly dependent on β and
on the singular values (σi)i.

3.2 Lipschitz continuity of proximal-like operators
In the previous section the Lipschitz continuity of the mapping x 7→ argminz‖z−Wx−
b‖2/2 + β‖W T z− x− b‖2/2 = (1 + β )(I+ βW TW )−1Wx + c̃ was established. In order
to add constraints on z (such as non-negativity constraints to obtain a non-linear mapping)
and to analyse deeper LRRNs we need a more general approach. We are intersted in the
Lipschitz properties of the function

Pβ ,W,G : x 7→ argmin
z

1
2‖z−Wx‖2 + β

2 ‖W
T z− x‖2 +G(z), (4)

where G(z) is essentially an arbitrary convex function (not necessarily differentiable). Since
‖z−Wx‖2/2 is strictly convex in z, the minimizer in the l.h.s. of Eq. 4 is unique and therefore
Pβ ,W,G is a proper function. If W = I, then the above mapping reduces to

x 7→ argmin
z
(1+β )‖z− x‖2 +G(z), (5)

which is known as proximal operator x 7→ proxG/(1+β )(x) in the convex optimization liter-
ature. Proximal operators are firmly non-expansive and therefore 1-Lipschitz continuous.
This property is extended in a suitable way to Pβ ,W,G:

Lemma 1. Let G be any proper l.s.c. convex function, W ∈ Rn×m a matrix with compatible

dimensions, and β ≥ 0. Then Pβ ,W,G is β 1/2+β−1/2

2 -Lipschitz.

Proof. The optimal z∗ = z∗(x) of ‖z−Wx‖2/2+β‖W T z− x‖2/2+G(z) is determined by
the optimality condition

0 = (I+βWW T )z∗− (1+β )Wx+g, (6)

where g ∈ ∂G(z∗) is a subgradient of G at z∗. Since the subgradient is a monotone operator,
it satisfies (g1− g2)

T (z1− z2) for all gi ∈ ∂G(zi), i = 1,2. Choosing zi = z∗i = z∗(xi) and
inserting gi = (1+β )Wxi− (I+βWW T )z∗i yields(

(1+β )W (x1− x2)− (I+βWW T )(z∗1− z∗2)
)
(z∗1− z∗2)≥ 0 (7)
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or

(1+β )(x1− x2)
TW T (z∗1− z∗2)≥ (z∗1− z∗2)

T (I+βWW T )(z∗1− z∗2). (8)

We introduce u := x1−x2 and v := z∗1− z∗2. Among all u with a fixed Euclidean norm δ ≥ 0,
the vector u leading to the largest l.h.s. is given by u = αW T v (using the Cauchy-Schwarz
inequality), where α ≥ 0 satisfies α‖W T v‖= δ . Hence, the above constraint can be restated
as

(1+β )αvTWW T v≥ vT (I+βWW T )v or ‖v‖2 ≤
(
(1+β )α−β

)
‖W T v‖2. (9)

This induces the constraint α ≥ β/(1+ β ) for the solution to be feasible. Inserting u =
W T v/α and rearranging yields

‖v‖
‖u‖

=
‖v‖

α‖W T v‖
≤
√
(1+β )α−β

α
(10)

for all feasible α ≥ β/(1+ β ). It is straightforward to verify that the mapping fβ (α) :=√
(1+β )α−β

α
with domain [β/(1+β ),∞) has range [0,(β 1/2 +β−1/2)/2], where the maxi-

mum is attained at α∗ = 2β/(1+β ). Hence,

‖z∗1− z∗2‖
‖x1− x2‖

≤ β 1/2 +β−1/2

2
i.e. ‖z∗1− z∗2‖ ≤

β 1/2 +β−1/2

2
‖x1− x2‖, (11)

which completes the proof.

Consistent with Section 3.1 the smallest Lipschitz constant is obtained by setting β = 1,
which yields the following corollary:

Corollary 1. P1,W,G is 1-Lipschitz.

Unlike in Section 3.1 (cf. Remark 1) the provided Lipschitz constant only depends on
β , and for β → 0 the Lemma above yields a vacuous bound. Nevertheless, one has the
following simple lemma:

Lemma 2. P0,W,G is ‖W‖2-Lipschitz.

Proof. We have

P0,W,G(x) = argmin
z

1
2‖z−Wx‖2 +G(z) = proxG(Wx) = (proxG ◦(W ·))(x), (12)

i.e. P0,W,G(x) is the composition of a linear mapping with a proximal step. Since the Lips-
chitz constant of the mapping x 7→Wx is ‖W‖2 and the proximal operator is 1-Lipschitz, we
deduce that the Lipschitz constant of P0,W,G is at most ‖W‖2.

In practice we are mostly interested in the choice of β = 1 (both regression and full
reconstructive terms) and β = 0 (pure regression term).
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3.3 General LRRNs
Using Lemma 1 the analysis of the energy underlying the lifted regression/reconstruction
networks (Eq. 1) is relatively straightforward. We define for k = 1, . . . ,L

ρk :=

{
β

1/2
k +β

−1/2
k

2 if βk > 0
‖Wk‖2 if βk = 0.

(13)

Theorem 1. For the layered energy model given in Eq. 1 let z∗(x) = argminz E(z,x) be the
minimizer for given input x. Then x 7→ z∗L(x) (i.e. the mapping from the input to the last layer
latent variables) is Lipschitz continuous with constant ∏

L
k=1 ρk.

Proof. Let z∗1(x) be given by

z∗1(x) = argmin
z1

min
z2,...,zL

E((z1, . . . ,zL),x)

= arg min
z1∈C1

min
z2∈C2,...,zL∈CL

1
2 ∑‖zk+1−Wkzk−bk‖2 + βk

2 ∑
∥∥zk−W T

k zk+1− ck
∥∥2

. (14)

Since minimizing out variables in a jointly convex function yields a convex function in the
remaining unknowns, we can write the above as

z∗1(x) = arg min
z1∈C1

1
2 ‖z1−W0x‖2 + β1

2

∥∥W T
0 z1− x

∥∥2
+G1(z1) = Pβ1,W0,G1(x). (15)

Hence, z∗1(x) is ρ1-Lipschitz due to Lemmas 1 and 2. Due to the layered structure z∗2 only
depends on z∗1 = z∗1(x), therefore

z∗2(z
∗
1) = arg min

z2∈C2

1
2 ‖z2−W1z∗1‖

2 + β2
2

∥∥W T
1 z2− z∗1

∥∥2
+G2(z2) = Pβ2,W1,G2(z

∗
1) (16)

for a suitable convex function G2. Hence, z∗2(z
∗
1) is ρ2-Lipschitz. Applying this argument

iteratively on the remaining layers, we find that z∗k(z
∗
k−1) is ρk-Lipschitz. Further, z∗L(x) =(

z∗L ◦ z∗L−1 ◦ · · · ◦ z∗1
)
(x), the Lipschitz constant of z∗L(x) is at most ∏

L
k=1 ρk.

Corollary 2. Let β1 = · · ·= βL−1 = 1 and βL = 0 (i.e. the output layer is a pure regression
layer). Then the Lipschitz constant of x 7→ z∗L(x) is at most ‖WL−1‖2.

Networks with such a choice for (βk)
L
k=1 have a clear interpretation: the first L−1 layers

extract non-expansive feature representations, and the last layer is an arbitrary linear regres-
sion layer to generate the target output. Hence, the Lipschitz properties of the network (and
therefore the robustness with respect to input perturbations) can be assessed by inspecting
the last layer matrix WL−1.

Remark 2. The network energy in Eq. 1 allows direct feedback from a subsequent layer to
the previous one (and therefore indirect feedback to all earlier layers). This feedback from
later layers can be essentially suppressed by using discounted terms [37, 40],

E(z;x) =
1
2 ∑

L−1
k=0 γ

k
(
‖zk+1−Wkzk−bk‖2 +βk

∥∥W T
k zk+1− zk− ck

∥∥2
)

(17)

for a feedback parameter γ > 0. With γ → 0 one recovers a feed-forward DNN, and the
contrastive learning approach for supervised training (see Section 4.2) is equivalent to back-
propagation. In that sense energy-based models such as Eqs. 1 and 17 are more general
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than feed-forward networks. Observe that Eq. 1 and Eq. 17 are actually equivalent, since the
feedback weight γk can be absorbed by reparametrizing the weights Wk, biases bk and ck,
and the activations zk. Nevertheless, the feedback parameter still influences initialization of
the network parameters and any weight regularization term.

Implementing LRRNs Determining z∗(x) requires minimizing a strictly (even strongly)
convex, possibly constrained, optimization problem Eq. 1. The easiest method to solve such
a task is coordinate descent, which minimizes sequentially the scalar network activations
{zk j} (with k iterating over all layers and j traversing units in the current layer). For many
relevant constraint sets Ck the optimal solution for zk j after fixing all other activations can be
stated in closed form. Hence, we employ coordinate descent in our implementation.

Feed-forward DNNs with RR layers Since the ReLU activation function is 1-Lipschitz,
it is possible to stack linear recognition+reconstruction (RR) layers followed by ReLU non-
linearities to obtain 1-Lipschitz feed-forward DNNs. Unfortunately, back-propagation in
this setting requires expensive matrix inversions. As shown in Section 4.2, using lifted NNs
avoids such explicit matrix inverses and further allows non-linear RR layers.

4 Learning with LRRNs
In this section we briefly discuss the application of LRRNs for unsupervised and supervised
learning. In the unsupervised setting LRRNs generalize subspace learning, and supervised
learning requires a non-standard approach since back-propagation is not directly applicable
for energy-based network models. We show results for the MNIST [18], Fashion-MNIST
(FMNIST, [36]), Kuzushiji-MNIST (KMNIST, [7]) and CIFAR [16] datasets. Training of the
models is performed by stochastic gradient descent, where the activations z∗ are first inferred
using coordinate descent, and the contribution of a training sample to the gradient is based on
these activations, e.g. ∇Wk E(z∗;x) = (Wkz∗k− z∗k−1 +bk)(z∗k)

T +βkz∗k+1(Wkz∗k+1− z∗k− ck)
T .

4.1 Unsupervised setting
Let {xi}N

i=1 be a set of unlabelled training samples. One question is whether a sensible energy
model can be obtained by solely minimizing the average energy of the training samples, i.e.

min
θ

J(θ) = min
θ

1
N ∑i min

z
E(z;xi) = min

θ

1
N ∑i E(z∗(xi);xi), (18)

where θ contains all the weights and biases in the energy model (Eq. 1). Since in this setting
we are not interested in the output layer, E(z;x) reduces to

E(z1;x) = 1
2 ‖z1−W0x‖2 + 1

2

∥∥W T
0 z1− x

∥∥2
+G1(z1), (19)

where G1 is a convex function obtained by minimizing out all subsequent layers z2, . . . ,zL,
and G1 acts therefore as a (learnable) prior on z1. We also absorbed the bias terms into G1.

Since E(z;x) induces an unnormalized energy model E(x) = minz E(z;x), it is not imme-
diately clear that the loss in Eq. 18 (which can also be seen as maximizing an unnormalized
probability) leads to any desired energy model. It can be shown that if G1 is coercive (i.e.
G1(z1)→ ∞ as ‖z1‖ → ∞), then E(x) is also coercive, and therefore samples with small
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energy (thus highly likely ones) are concentrated to bounded (convex) sets. Hence, proper
shaping of G1 is somewhat analogous to the “bottleneck” in standard auto-encoders.

Note that Eq. 19 resembles an auto-encoder with a single hidden layer: the first term
defines the encoder, the second term is a reconstruction error and therefore corresponds to
the decoder, and the last term represents the prior on the latent variables. If G1(z1) ≡ 0
(which means that the underlying LRRN has exactly one linear layer), it can be shown that
Eq. 18 essentially performs an eigen-decomposition of the scatter matrix ∑i xixT

i , and is
therefore strongly connected to PCA and subspace learning. If all training points {xi} lie in
an r-dimensional subspace, and dim(z1) = r, then W T

0 is an orthonormal matrix satisfying
W0W T

0 = I, and E(z∗1(x);x) = 0 for all points lying in that subspace.
Fig. 1 depicts the filter obtained from such unsupervised training on the MNIST dataset.

Using linear activations leads to PCA-like modes for the filter (Fig. 1(a)), whereas ReLU-like
non-negative activations yield filters that resemble dictionary elements learned via sparse
coding (Fig. 1(b)). Unlike PCA, the filters in Fig. 1(a) describe only a subspace and are
therefore not necessarily aligned with the PCA basis. Further visual results are shown in the
supplementary material.

(a) Linear (b) ReLU-type

Figure 1: First layer filters of unsupervised 784-32-32 LRRNs using different activations.

Table 1 demonstrates the ability of a trained energy-based model to distinguish between
different datasets. Test data from the same dataset has on average consistently smaller en-
ergies (along the main diagonal) than samples from different datasets. Further, horizontally
flipped (mirrored) test data from the same dataset has on average also a higher energy than
the original test data. Finally, samples from a Gaussian fitted to the training set with diagonal
covariance matrix have significantly higher energy values. Note that the characters in KM-
NIST have generally larger variability than e.g. MNIST, which explains the higher overall
energies for this dataset. In summary, unsupervised learning of LRRNs allows to train unnor-
malized energy models capturing the training distribution even without explicitly addressing
the lack of normalization (as opposed to contrastive divergence [13], noise-contrastive esti-
mation [12] or score matching [14]).

Test data
minz E(z;x) MNIST KMNIST FMNIST Mirrored Fitted Gaussian

Tr
ai

ni
ng MNIST 13.7±5.1 26.4±6.0 35.9±8.3 21.5±6.8 48.0±3.8

KMNIST 59.5±24.1 36.5±12.9 52.1±16.0 43.8±15.6 78.9±4.5
FMNIST 55.4±30.8 26.8±11.5 12.6±6.7 17.4±11.0 65.0±3.9

Table 1: Avg. energies (and std. deviations) of unsupervised 784-32-32 ReLU-models trained
on MNIST, KMNIST and FMNIST (rows), evaluated on different test sets (rows).

Citation
Citation
{Hinton} 2002

Citation
Citation
{Gutmann and Hyv{ä}rinen} 2012

Citation
Citation
{Hyv{ä}rinen} 2005



HØIER AND ZACH: LIFTED REGRESSION/RECONSTRUCTION NETWORKS 9

Remark 3. Since E(z1;x) is jointly convex in x and z1, E(z∗1(x);x) reduces to a convex func-
tion of x. Due to the connection of P1,W0,G1 with proximal operators (which are themselves
generalizations of projection steps to convex sets), the mapping x 7→ E(z∗1(x);x) can be inter-
preted as generalization of the squared distance to a convex set (whose exact shape is learned
from data). Hence, E(z∗1(x);x) cannot directly represent e.g. non-convex manifolds. In order
to increase the expressive power of LRRNs in the unsupervised setting, one can e.g. train
class-specific energy models with weights shared across classes, 1

N ∑i minz:zL=yi E(z;xi)→
minθ , where yi is the label associated with xi.

4.2 Supervised learning
Let {(xi,yi)}N

i=1 be labelled training data, and the aim is to estimate network parameters such
that z∗L(xi) ≈ yi, where z∗L(x) is obtained by minimizing the energy model in Eq. 1. Since
the mapping xi 7→ z∗L(xi) has generally no closed form expression in terms of the model
parameters θ = (Wk,ck,bk)

L−1
k=0 , we employ a contrastive learning approach [28, 37, 39] in

the supervised setting. Let us denote the free and the so called clamped solution by z∗(x) and
ẑ(x,y), respectively,

z∗(x) = argminz E(z;x) ẑ(x,y) = argminz:zL=y E(z;x). (20)

Thus, the clamped solution is obtained by minimizing the network energy with the additional
constraint of fixing the output layer. By construction E(z∗(x);x)≤ E(ẑ(x,y);x), and the aim
of contrastive learning is to close the gap between these two energies by adjusting the model
parameters θ :

`(θ) = 1
N ∑i

(
E(ẑ(xi,yi);xi)−E(z∗(xi);xi)

)
→minθ . (21)

This loss can be interpreted as an approximation of the cross-entropy loss [39]. Since E is
strongly convex, E(ẑ(x,y);x) ≈ E(z∗(x);x) implies that z∗L(x) ≈ y. We apply weight decay
regularization on the last layer matrix WL−1 to favor non-contracting, distance-preserving
feature representations in the first L−1 layers.

Fig. 2 illustrates the evolution of the training loss and test accuracies w.r.t. the num-
ber of epochs for the MNIST, FMNIST and KMNIST datasets. By inspecting the spec-
tral norm of the last layer weight matrix, the mappings x 7→ z∗L(x) have Lipschitz constants
of at most 0.94, 0.95, and 1.07, respectively, for MNIST, KMNIST and FMNIST trained
models. It can be easily derived (see e.g. [32]), that the classifier output is unaffected
by any input perturbation ∆x with ‖∆x‖2 ≤ mx/(

√
2ρ), where ρ is a Lipschitz constant

of x 7→ z∗L(x) and mx = z∗L, j(x)(x)−max j 6= j(x) z∗L, j(x) is the margin for the predicted label
j(x) = argmax j z∗L, j(x). Given the median margins for the corresponding test data, this trans-
lates to median norms of 0.70 (MNIST), 0.51 (KMNIST), and 0.46 (FMNIST), for provably
safe perturbations. For comparison, [32] reports a value of 1.02 for an MNIST-trained small-
scale CNN (but does not state its test accuracy). We also explore the impact of unsupervised
pretraining on supervised learning in the supplementary material (yielding slightly higher
accuracies).

The analogous results for the CIFAR-10 dataset are shown in Fig. 3, where a {1024,3072}-
256-256-10 ReLU-type LRRN is trained for 100 epochs on grayscale and RGB images, re-
spectively, without any data augmentation. The obtained networks are almost 1-Lipschitz
with Lipschitz constants of 1.0011 and 1.007, respectively. Using the observed classification
margins this translates to median radii of 0.07 (grayscale) and 0.12 (RGB) for the guarded
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Figure 2: Loss and classification accuracies for a 784-64-64-10 ReLU-type LRRN. A final
accuracy of 97.2% is achieved for MNIST, 85.6% for FMNIST and 85.7% for KMNIST.
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Figure 3: Loss and classification accuracies for a {1024,3072}-256-256-10 ReLU-type
LRRN. An accuracy of 44.75% and 54.02% is achieved for grayscale and RGB versions
of CIFAR-10 respectively.

region, which indicates that the network is significantly more uncertain in its predictions
than the MNIST models above (which is also reflected in the lower test accuracy). Unfortu-
nately, [32] does not report any result for CIFAR-10. To put these numbers somewhat into
perspective, the median norms of successful empirical L2-attacks reported in [27] are≈ 0.13
for a baseline CNN model and ≈ 0.8 for an adversarially trained CNN.

5 Conclusion

We propose lifted regression/reconstruction networks (LRRNs), that guarantee controlled
Lipschitz continuity with easy-to-evaluate constants in layered energy-based models. This is
achieved by essentially symmetrizing the terms in the underlying energy model, and there-
fore explicit penalizers on the model parameters (e.g. weight matrices) are not required to
achieve a target Lipschitz property. We demonstrate how LRRNs can be used for both super-
vised and unsupervised learning. Future work includes exploration of the semi-supervised
setting by combining the discriminative (contrastive) loss with unsupervised training. One
goal is to obtain a unified DNN architecture for regression (and classification) that is further
able to detect out-of-distribution samples (in the spirit of [10]), but at the same time explicitly
allow regression tasks, aim for robustness by design, and target a unified training method.
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