671 research outputs found

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    User Multi-Interest Modeling for Behavioral Cognition

    Full text link
    Representation modeling based on user behavior sequences is an important direction in user cognition. In this study, we propose a novel framework called Multi-Interest User Representation Model. Specifically, the model consists of two sub-models. The first sub-module is used to encode user behaviors in any period into a super-high dimensional sparse vector. Then, we design a self-supervised network to map vectors in the first module to low-dimensional dense user representations by contrastive learning. With the help of a novel attention module which can learn multi-interests of user, the second sub-module achieves almost lossless dimensionality reduction. Experiments on several benchmark datasets show that our approach works well and outperforms state-of-the-art unsupervised representation methods in different downstream tasks.Comment: during peer revie

    ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

    Full text link
    With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on a real-world public dataset (i.e., MovieLens-1M) to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension.Comment: Under Revie

    Graph Based Long-Term And Short-Term Interest Model for Click-Through Rate Prediction

    Full text link
    Click-through rate (CTR) prediction aims to predict the probability that the user will click an item, which has been one of the key tasks in online recommender and advertising systems. In such systems, rich user behavior (viz. long- and short-term) has been proved to be of great value in capturing user interests. Both industry and academy have paid much attention to this topic and propose different approaches to modeling with long-term and short-term user behavior data. But there are still some unresolved issues. More specially, (1) rule and truncation based methods to extract information from long-term behavior are easy to cause information loss, and (2) single feedback behavior regardless of scenario to extract information from short-term behavior lead to information confusion and noise. To fill this gap, we propose a Graph based Long-term and Short-term interest Model, termed GLSM. It consists of a multi-interest graph structure for capturing long-term user behavior, a multi-scenario heterogeneous sequence model for modeling short-term information, then an adaptive fusion mechanism to fused information from long-term and short-term behaviors. Comprehensive experiments on real-world datasets, GLSM achieved SOTA score on offline metrics. At the same time, the GLSM algorithm has been deployed in our industrial application, bringing 4.9% CTR and 4.3% GMV lift, which is significant to the business.Comment: CIKM 2022 accepte

    TBIN: Modeling Long Textual Behavior Data for CTR Prediction

    Full text link
    Click-through rate (CTR) prediction plays a pivotal role in the success of recommendations. Inspired by the recent thriving of language models (LMs), a surge of works improve prediction by organizing user behavior data in a \textbf{textual} format and using LMs to understand user interest at a semantic level. While promising, these works have to truncate the textual data to reduce the quadratic computational overhead of self-attention in LMs. However, it has been studied that long user behavior data can significantly benefit CTR prediction. In addition, these works typically condense user diverse interests into a single feature vector, which hinders the expressive capability of the model. In this paper, we propose a \textbf{T}extual \textbf{B}ehavior-based \textbf{I}nterest Chunking \textbf{N}etwork (TBIN), which tackles the above limitations by combining an efficient locality-sensitive hashing algorithm and a shifted chunk-based self-attention. The resulting user diverse interests are dynamically activated, producing user interest representation towards the target item. Finally, the results of both offline and online experiments on real-world food recommendation platform demonstrate the effectiveness of TBIN

    Multi-Granularity Click Confidence Learning via Self-Distillation in Recommendation

    Full text link
    Recommendation systems rely on historical clicks to learn user interests and provide appropriate items. However, current studies tend to treat clicks equally, which may ignore the assorted intensities of user interests in different clicks. In this paper, we aim to achieve multi-granularity Click confidence Learning via Self-Distillation in recommendation (CLSD). Due to the lack of supervised signals in click confidence, we first apply self-supervised learning to obtain click confidence scores via a global self-distillation method. After that, we define a local confidence function to adapt confidence scores at the user group level, since the confidence distributions can be varied among user groups. With the combination of multi-granularity confidence learning, we can distinguish the quality of clicks and model user interests more accurately without involving extra data and model structures. The significant improvements over different backbones on industrial offline and online experiments in a real-world recommender system prove the effectiveness of our model. Recently, CLSD has been deployed on a large-scale recommender system, affecting over 400 million users

    ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation

    Full text link
    Recommender system (RS) devotes to predicting user preference to a given item and has been widely deployed in most web-scale applications. Recently, knowledge graph (KG) attracts much attention in RS due to its abundant connective information. Existing methods either explore independent meta-paths for user-item pairs over KG, or employ graph neural network (GNN) on whole KG to produce representations for users and items separately. Despite effectiveness, the former type of methods fails to fully capture structural information implied in KG, while the latter ignores the mutual effect between target user and item during the embedding propagation. In this work, we propose a new framework named Adaptive Target-Behavior Relational Graph network (ATBRG for short) to effectively capture structural relations of target user-item pairs over KG. Specifically, to associate the given target item with user behaviors over KG, we propose the graph connect and graph prune techniques to construct adaptive target-behavior relational graph. To fully distill structural information from the sub-graph connected by rich relations in an end-to-end fashion, we elaborate on the model design of ATBRG, equipped with relation-aware extractor layer and representation activation layer. We perform extensive experiments on both industrial and benchmark datasets. Empirical results show that ATBRG consistently and significantly outperforms state-of-the-art methods. Moreover, ATBRG has also achieved a performance improvement of 5.1% on CTR metric after successful deployment in one popular recommendation scenario of Taobao APP.Comment: Accepted by SIGIR 2020, full paper with 10 pages and 5 figure
    corecore