18,293 research outputs found

    Lifelong Learning CRF for Supervised Aspect Extraction

    Full text link
    This paper makes a focused contribution to supervised aspect extraction. It shows that if the system has performed aspect extraction from many past domains and retained their results as knowledge, Conditional Random Fields (CRF) can leverage this knowledge in a lifelong learning manner to extract in a new domain markedly better than the traditional CRF without using this prior knowledge. The key innovation is that even after CRF training, the model can still improve its extraction with experiences in its applications.Comment: Accepted at ACL 2017. arXiv admin note: text overlap with arXiv:1612.0794

    New Frontiers of Quantified Self: Finding New Ways for Engaging Users in Collecting and Using Personal Data

    Get PDF
    In spite of the fast growth in the market of devices and applications that allow people to collect personal information, Quantified Self (QS) tools still present a variety of issues when they are used in everyday lives of common people. In this workshop we aim at exploring new ways for designing QS systems, by gathering different researchers in a unique place for imagining how the tracking, management, interpretation and visualization of personal data could be addressed in the future

    Learning Independent Causal Mechanisms

    Full text link
    Statistical learning relies upon data sampled from a distribution, and we usually do not care what actually generated it in the first place. From the point of view of causal modeling, the structure of each distribution is induced by physical mechanisms that give rise to dependences between observables. Mechanisms, however, can be meaningful autonomous modules of generative models that make sense beyond a particular entailed data distribution, lending themselves to transfer between problems. We develop an algorithm to recover a set of independent (inverse) mechanisms from a set of transformed data points. The approach is unsupervised and based on a set of experts that compete for data generated by the mechanisms, driving specialization. We analyze the proposed method in a series of experiments on image data. Each expert learns to map a subset of the transformed data back to a reference distribution. The learned mechanisms generalize to novel domains. We discuss implications for transfer learning and links to recent trends in generative modeling.Comment: ICML 201

    Neural Topic Modeling with Continual Lifelong Learning

    Full text link
    Lifelong learning has recently attracted attention in building machine learning systems that continually accumulate and transfer knowledge to help future learning. Unsupervised topic modeling has been popularly used to discover topics from document collections. However, the application of topic modeling is challenging due to data sparsity, e.g., in a small collection of (short) documents and thus, generate incoherent topics and sub-optimal document representations. To address the problem, we propose a lifelong learning framework for neural topic modeling that can continuously process streams of document collections, accumulate topics and guide future topic modeling tasks by knowledge transfer from several sources to better deal with the sparse data. In the lifelong process, we particularly investigate jointly: (1) sharing generative homologies (latent topics) over lifetime to transfer prior knowledge, and (2) minimizing catastrophic forgetting to retain the past learning via novel selective data augmentation, co-training and topic regularization approaches. Given a stream of document collections, we apply the proposed Lifelong Neural Topic Modeling (LNTM) framework in modeling three sparse document collections as future tasks and demonstrate improved performance quantified by perplexity, topic coherence and information retrieval task.Comment: ICML202
    corecore