18 research outputs found

    Investigating reproductive success and endocrine regulation of mating strategies in male medaka

    Get PDF
    Mate guarding, when two males compete for one female, is a reproductive strategy seen across a variety of vertebrate species. This often leads to hierarchical relationships, in which one male exerts dominance over other, subordinate males. However, the physiological mechanisms that promote dominance or subordinance in males remain largely unexplored. This study investigates the reproductive success and endocrine signals of these reproductive strategies in Japanese medaka (Oryzias latipes). To identify dominant and subordinate males, triads consisting of two males of different genotypes and one female were observed repeatedly for 5 days. Male reproductive success was determined by genotyping embryos from each female. We found that the number of eggs fertilized by dominants and subordinates did not differ (p=0.29), indicating that dominant behavior does not guarantee reproductive success and that subordinate males may successfully fertilize eggs using sneaker male tactics. We hypothesized that these behaviors are linked to activity in the reproductive endocrine axis. To test this hypothesis, we quantified pituitary luteinizing hormone (LH) and follicle stimulating hormone (FSH) in dominant and subordinate males using ELISAs. While FSH did not differ between the groups, LH was unexpectedly higher in subordinate males (p=0.047). This indicates that either LH production is stimulated, or its pituitary release is inhibited in subordinates. To investigate these opposing explanations, we measured mRNA levels of LH, FSH, and GnRH receptors in the pituitary, and GnRH and AVT in the brain of dominant and subordinate males using qPCR. Mean differences between dominants and subordinates were not significant for any gene. Dominant fish expressed higher lhb in 8/12 tanks, indicating that LH production is not stimulated in subordinates, but as the transcripts for GnRH and its receptors also did not differ, further studies are needed to determine the mechanism by which LH release may be inhibited

    Role of ferritinophagy in cystine deprivation-induced cell death in glioblastoma cells

    Get PDF
    Ferroptosis is a form of cell death caused by iron-dependent lipid peroxidation. Cancer cells increase cystine uptake for the synthesis of glutathione (GSH), which is used by glutathione peroxidase 4 to reduce lipid peroxides. Here, we report that cystine deprivation in glioblastoma cells, but not inhibition of GSH synthesis by l-buthionine sulfoximine (BSO), induces ferroptosis. We found that cystine deprivation decreased the protein levels of ferritin heavy chain FTH1, whereas it was increased by BSO treatment. The lysosome inhibitor bafilomycin A1 or deletion of nuclear receptor coactivator 4 (NCOA4) inhibited cystine deprivation-induced decrease in FTH1 protein levels and cell death. In addition, cystine deprivation induced microtubule-associated protein light chain 3 (LC3)-II protein accumulation, suggesting that cystine deprivation induces ferritinophagy. BSO causes cell death when glioblastoma cells are treated with iron inducers, ferrous ammonium sulfate or hemin. On the other hand, cystine deprivation-induced degradation of FTH1 and cell death required glutamine. This study suggests that ferritinophagy, in addition to GSH depletion, plays an important role in cystine deprivation-induced ferroptosis in glioblastoma cells

    Molecular Characterisation of Long-Acting Insulin Analogues in Comparison with Human Insulin, IGF-1 and Insulin X10

    Get PDF
    AIMS/HYPOTHESIS: There is controversy with respect to molecular characteristics of insulin analogues. We report a series of experiments forming a comprehensive characterisation of the long acting insulin analogues, glargine and detemir, in comparison with human insulin, IGF-1, and the super-mitogenic insulin, X10. METHODS: We measured binding of ligands to membrane-bound and solubilised receptors, receptor activation and mitogenicity in a number of cell types. RESULTS: Detemir and glargine each displayed a balanced affinity for insulin receptor (IR) isoforms A and B. This was also true for X10, whereas IGF-1 had a higher affinity for IR-A than IR-B. X10 and glargine both exhibited a higher relative IGF-1R than IR binding affinity, whereas detemir displayed an IGF-1R:IR binding ratio of ≤ 1. Ligands with high relative IGF-1R affinity also had high affinity for IR/IGF-1R hybrid receptors. In general, the relative binding affinities of the analogues were reflected in their ability to phosphorylate the IR and IGF-1R. Detailed analysis revealed that X10, in contrast to the other ligands, seemed to evoke a preferential phosphorylation of juxtamembrane and kinase domain phosphorylation sites of the IR. Sustained phosphorylation was only observed from the IR after stimulation with X10, and after stimulation with IGF-1 from the IGF-1R. Both X10 and glargine showed an increased mitogenic potency compared to human insulin in cells expressing many IGF-1Rs, whereas only X10 showed increased mitogenicity in cells expressing many IRs. CONCLUSIONS: Detailed analysis of receptor binding, activation and in vitro mitogenicity indicated no molecular safety concern with detemir

    Triggering MSR1 promotes JNK-mediated inflammation in IL-4 activated macrophages

    Get PDF
    Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL-4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL-4-activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL-4-activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti-inflammatory to a pro-inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization

    Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib

    Get PDF
    Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor-positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib-induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib-induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence-like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse-free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells

    Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model

    Get PDF
    Optogenetic manipulation and optical imaging in the near-infrared range allow non-invasive light-control and readout of cellular and organismal processes in deep tissues in vivo. Here, we exploit the advantages of Rhodopseudomonas palustris BphP1 bacterial phytochrome, which incorporates biliverdin chromophore and reversibly photoswitches between the ground (740-800 nm) and activated (620-680 nm) states, to generate a loxP-BphP1 transgenic mouse model. The mouse enables Cre-dependent temporal and spatial targeting of BphP1 expression in vivo. We validate the optogenetic performance of endogenous BphP1, which in the activated state binds its engineered protein partner QPAS1, to trigger gene transcription in primary cells and living mice. We demonstrate photoacoustic tomography of BphP1 expression in different organs, developing embryos, virus-infected tissues and regenerating livers, with the centimeter penetration depth. The transgenic mouse model provides opportunities for both near-infrared optogenetics and photoacoustic imaging in vivo and serves as a source of primary cells and tissues with genomically encoded BphP1. Optogenetic tools can be used as in vivo imaging probes. Here the authors generate a loxP-BphP1 transgenic mouse to enable Cre-dependent temporal and spatial targeting of BphP1 expression in vivo; they show photoacoustic tomography of BphP1 expression in developing embryos and regenerating livers.Peer reviewe

    GDF15 promotes weight loss by enhancing energy expenditure in muscle

    Get PDF
    Funding Information: We thank R. Seeley for sharing GFRAL-null mice; B. Lowell for sharing β-less mice; and J. Wu for shipping β-less mice to us. G.R.S. was supported by a Diabetes Canada Investigator Award (DI-5-17-5302-GS), a Canadian Institutes of Health Research Foundation Grant (201709FDN-CEBA-116200), a Tier 1 Canada Research Chair in Metabolic Diseases and a J. Bruce Duncan Endowed Chair in Metabolic Diseases; D.W. by Fellowship Grants from the McMaster Institute for Research on Aging (MIRA) at McMaster University; S.R. by a postdoctoral fellowship supported by MITACS and Novo Nordisk; L.K.T. by a CIHR Post-Doctoral Fellowship Award and Michael DeGroote Fellowship Award in Basic Biomedical Science; E.M.D. by a Vanier Canada Graduate Scholarship; G.P.H. by the Natural Sciences and Engineering Research Council of Canada (NSERC: 400362); G.J.D. and S.M.F. by NSERC-CGSM scholarships; L.D. by the Fonds de Recherche du QuÊbec-SantÊ doctoral training award; D.P.B. by the GSK Chair in Diabetes of UniversitÊ de Sherbrooke and a FRQS J1 salary award. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by the NCI, NHGRI, NHLBI, NIDA, NIMH and NINDS. Funding Information: S.B.J. and R.E.K. are employees of Novo Nordisk, a pharmaceutical company producing and selling medicine for the treatment of diabetes and obesity. G.R.S. is a co-founder and shareholder of Espervita Therapeutics. McMaster University has received funding from Espervita Therapeutics, Esperion Therapeutics, Poxel Pharmaceuticals and Nestle for research conducted in the laboratory of G.R.S. S.R. is supported by a MITACS postdoctoral fellowship sponsored by Novo Nordisk. H.C.G. holds the McMaster-Sanofi Population Health Institute Chair in Diabetes Research and Care. G.R.S., G.P. and H.C.G. are inventors listed on a patent for identifying GDF15 as a biomarker for metformin. G.R.S. has received consulting/speaking fees from Astra Zeneca, Eli Lilly, Esperion Therapeutics, Merck, Poxel Pharmaceuticals and Cambrian Biosciences. The other authors declare no competing interests. Publisher Copyright: Š 2023, The Author(s).Peer reviewedPublisher PD

    Molecular and Physiological function of the mammalian CCR4-NOT subunit CNOT9

    Get PDF
    Messenger RNA (mRNA) decay is an indisputable component of gene expression regulation. In higher eukaryotes such as humans and mice, this process is mainly governed by a multi-subunit protein assemblage known as the CCR4-NOT complex. The complex is composed of a central scaffold CNOT1, regulatory subunits CNOT2 and CNOT3, a catalytic core consisting of CNOT6, CNOT6L, CNOT7, and CNOT8 proteins, and additional three subunits CNOT9, CNOT10, and CNOT11. In this study, I analyzed the role of subunit CNOT9 in target mRNA decay in the context of mouse embryonic development. CNOT9 knockout mice appear normal during onset of gastrulation, yet exhibit severe growth and differentiation defects during mid-late gastrulation stages (E8.5 to E9.5), accompanied by extensive cell death. Similar nature of phenotype was also observed in epiblast specific CNOT9 deletion mutants, suggesting major contribution of epiblast lineage cells in determining knockout embryo phenotype. At the molecular level, CNOT9 is primarily localized within the cytoplasm and bridges interactions between the CCR4-NOT complex and the miRNA-RISC complex. Transcriptomic analysis identied key determinants of gastrulation such as Nodal, Lefty1/2, Cfc-1 to be signicantly upregulated in CNOT9 KO embryos relative to controls. Among these targets, Lefty2 mRNA expression was found to be post-transcriptionally regulated by CNOT9. Reporter mRNA containing Lefty2 3\u27-UTR element had higher stability in cells expressing CNOT1-binding-mutant form of CNOT9, compared to cells expressing wild-type CNOT9. Finally, in-vitro experiments with CNOT9 KO embryonic stem (ES) cells further substantiated the importance of gastrulation regulation via CNOT9.Okinawa Institute of Science and Technology Graduate Universit
    corecore