152 research outputs found

    Dynamics and Control of Humanoid Robots: A Geometrical Approach

    Full text link
    his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamicsComment: 27 pages, 9 figures, Late

    Entropic Geometry of Crowd Dynamics

    Get PDF

    Jet Methods in Time-Dependent Lagrangian Biomechanics

    Full text link
    In this paper we propose the time-dependent generalization of an `ordinary' autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation. Keywords: Human time-dependent biomechanics, configuration bundle, jet spaces, Ricci flowComment: 13 pages, 3 figure

    Jet Spaces in Modern Hamiltonian Biomechanics

    Full text link
    In this paper we propose the time-dependent Hamiltonian form of human biomechanics, as a sequel to our previous work in time-dependent Lagrangian biomechanics [1]. Starting with the Covariant Force Law, we first develop autonomous Hamiltonian biomechanics. Then we extend it using a powerful geometrical machinery consisting of fibre bundles and jet manifolds associated to the biomechanical configuration manifold. We derive time-dependent, dissipative, Hamiltonian equations and the fitness evolution equation for the general time-dependent human biomechanical system. Keywords: Human biomechanics, covariant force law, configuration manifold, jet manifolds, time-dependent Hamiltonian dynamicsComment: 16 pages, 3 figure

    New Mechanics of Spinal Injury

    Full text link
    The prediction and prevention of spinal injury is an important aspect of preventive health science. The spine, or vertebral column, represents a chain of 26 movable vertebral bodies, joint together by transversal viscoelastic intervertebral discs and longitudinal elastic tendons. This paper proposes a new locally-coupled loading-rate hypothesis}, which states that the main cause of both soft- and hard-tissue spinal injury is a localized Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes a localized spine in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of the local spinal motions and derive from it the corresponding coupled SE(3)-jolt dynamics. The SE(3)-jolt is the main cause of two basic forms of spinal injury: (i) hard-tissue injury of local translational dislocations; and (ii) soft-tissue injury of local rotational disclinations. Both the spinal dislocations and disclinations, as caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum model. Keywords: localized spinal injury, coupled loading-rate hypothesis, coupled Newton-Euler dynamics, Euclidean jolt dynamics, spinal dislocations and disclinationsComment: 14 pages, 1 figure, Late
    • …
    corecore