4 research outputs found

    Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction

    Get PDF
    In this paper the steady two dimensional stagnation point flow of a viscous incompressible electrically conducting bio-nanofluid over a stretching/shrinking wedge in the presence of passively control boundary condition, Stefan blowing and multiple slips is numerically investigated. Magnetic induction is also taken into account. The governing conservation equations are rendered into a system of ordinary differential equations via appropriate similarity transformations. The reduced system is solved using a fast, convergent Chebyshev collocation method. The influence of selected parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction and density of motile microorganisms as well as on the local skin friction, local Nusselt number, local Sherwood number and density of motile microorganism numbers are discussed and presented graphically. Validation with previously published results is performed and an excellent agreement is found. The study is relevant to electromagnetic manufacturing processes involving bionano-fluids

    Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects

    Get PDF
    In this paper, a new bio-nano-transport model is presented. The effects of first and second order velocity slips, thermal slip, mass slip, and gyro-tactic (torque-responsive) microorganism slip of bioconvectivenanofluid flow from amoving plate under blowing phenomenon are numerically examined. The flow model is expressed by partial differential equations which areconverted to a similar boundary value problem bysimilarity transformations. The boundary value problem is converted to a system of nonlinear equationswhich are then solved by a Matlab nonlinear equation solver fsolveintegrated with a Matlab ODEsolverode15s. The effects of selected control parameters (first order slip, second order slip, thermal slip, microorganism slip, blowing, nanofluid parameters) on the non-dimensional velocity, temperature, nanoparticle volume fraction, density ofmotile micro-organism, skin friction coefficient, heat transfer rate, mass flux of nanoparticles andmass fluxof microorganismsare analyzed. Our analysis reveals that a higher blowing parameter enhances micro-organism propulsion, flow velocityand nano-particle concentration, and increases the associated boundary layerthicknesses. A higher wall slip parameter enhances mass transfer and accelerates the flow. The MATLAB computations have been rigorously validated with the second-order accurate finite difference Nakamura tri-diagonal method.The current study is relevant to microbial fuel cell technologies which combine nanofluid transport, bioconvection phenomena and furthermore finds applications in nano-biomaterials sheetprocessing systems

    Numerical solutions for nonlinear gyrotactic bioconvection in nanofluid-saturated porous media with stefan blowing and multiple slip effects

    Get PDF
    A mathematical model is developed to examine the effects of the Stefan blowing, second order velocity slip, thermal slip and microorganism species slip on nonlinear bioconvection boundary layer flow of a nanofluid over a horizontal plate embedded in a porous medium with the presence of passively controlled boundary condition. Scaling group transformations are used to find similarity equations of such nanobioconvection flows. The similarity equations are numerically solved with a Chebyshev collocation method. Validation of solutions is conducted with a Nakamura tri-diagonal finite difference algorithm. The effects of nanofluid characteristics and boundary properties such as the slips, Stefan blowing, Brownian motion and Grashof number on the dimensionless fluid velocity, temperature, nanoparticle volume fraction, motile microorganism, skin friction, the rate of heat transfer and the rate of motile microorganism transfer are investigated. The work is relevant to bio-inspired nanofluid-enhanced fuel cells and nano-materials fabrication processes

    Lie Group Analysis and Numerical Solution of Magnetohydrodynamic Free Convective Slip Flow of Micropolar Fluid Over a Moving Plate With Heat Transfer

    Get PDF
    In this paper, we investigate magnetohydrodynamic free convective flow of micropolar fluid over a moving flat plate using the Lie group transformations and numerical methods. Instead of using conventional no-slip boundary conditions, we used both the velocity and thermal slip boundary conditions to achieve physically realistic and practically useful results. The governing boundary layer equations are non-dimensionalized and transformed into a set of coupled ordinary differential equations (ODEs) using similarity transformations generated by the Lie group, before being solved numerically using Matlab stiff ODE solver ode15s and Matlab trust-region-reflective algorithm lsqnonlin. The effects of governing parameters on the dimensionless velocity, angular velocity, temperature, skin friction and heat transfer rate are investigated. Our analysis revealed that the dimensionless velocity and angular velocity decrease whilst the dimensionless temperature increases with the velocity slip parameter. Thermal slip reduces the dimensionless velocity and temperature but raises the dimensionless angular velocity. Magnetic field suppresses the velocity but elevates the temperature and angular velocity. Results reported in this paper are in good agreement with the ones reported by the previous authors
    corecore