459 research outputs found

    Renaming Global Variables in C Mechanically Proved Correct

    Get PDF
    Most integrated development environments are shipped with refactoring tools. However, their refactoring operations are often known to be unreliable. As a consequence, developers have to test their code after applying an automatic refactoring. In this article, we consider a refactoring operation (renaming of global variables in C), and we prove that its core implementation preserves the set of possible behaviors of transformed programs. That proof of correctness relies on the operational semantics of C provided by CompCert C in Coq.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    Continuation-Passing C: compiling threads to events through continuations

    Get PDF
    In this paper, we introduce Continuation Passing C (CPC), a programming language for concurrent systems in which native and cooperative threads are unified and presented to the programmer as a single abstraction. The CPC compiler uses a compilation technique, based on the CPS transform, that yields efficient code and an extremely lightweight representation for contexts. We provide a proof of the correctness of our compilation scheme. We show in particular that lambda-lifting, a common compilation technique for functional languages, is also correct in an imperative language like C, under some conditions enforced by the CPC compiler. The current CPC compiler is mature enough to write substantial programs such as Hekate, a highly concurrent BitTorrent seeder. Our benchmark results show that CPC is as efficient, while using significantly less space, as the most efficient thread libraries available.Comment: Higher-Order and Symbolic Computation (2012). arXiv admin note: substantial text overlap with arXiv:1202.324

    FunTAL: Reasonably Mixing a Functional Language with Assembly

    Full text link
    We present FunTAL, the first multi-language system to formalize safe interoperability between a high-level functional language and low-level assembly code while supporting compositional reasoning about the mix. A central challenge in developing such a multi-language is bridging the gap between assembly, which is staged into jumps to continuations, and high-level code, where subterms return a result. We present a compositional stack-based typed assembly language that supports components, comprised of one or more basic blocks, that may be embedded in high-level contexts. We also present a logical relation for FunTAL that supports reasoning about equivalence of high-level components and their assembly replacements, mixed-language programs with callbacks between languages, and assembly components comprised of different numbers of basic blocks.Comment: 15 pages; implementation at https://dbp.io/artifacts/funtal/; published in PLDI '17, Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation, June 18 - 23, 2017, Barcelona, Spai

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    An Improved Continuation Call-Based Implementation of Tabling

    Get PDF
    Tabled evaluation has been proved an effective method to improve several aspects of goal-oriented query evaluation, including termination and complexity. Several “native” implementations of tabled evaluation have been developed which offer good performance, but many of them require significant changes to the underlying Prolog implementation, including the compiler and the abstract machine. Approaches based on program transformation, which tend to minimize changes to both the Prolog compiler and the abstract machine, have also been proposed, but they often result in lower efficiency. We explore some techniques aimed at combining the best of these worlds, i.e., developing an extensible implementation which requires minimal modifications to the compiler and the abstract machine, and with reasonably good performance. Our preliminary experiments indicate promising results

    Compiler architecture using a portable intermediate language

    Get PDF
    The back end of a compiler performs machine-dependent tasks and low-level optimisations that are laborious to implement and difficult to debug. In addition, in languages that require run-time services such as garbage collection, the back end must interface with the run-time system to provide those services. The net result is that building a compiler back end entails a high implementation cost. In this dissertation I describe reusable code generation infrastructure that enables the construction of a complete programming language implementation (compiler and run-time system) with reduced effort. The infrastructure consists of a portable intermediate language, a compiler for this language and a low-level run-time system. I provide an implementation of this system and I show that it can support a variety of source programming languages, it reduces the overall eort required to implement a programming language, it can capture and retain information necessary to support run-time services and optimisations, and it produces efficient code

    Scheme 2003: proceedings of the fourth workshop on scheme and functional programming

    Get PDF
    technical reportThis report contains the papers presented at the Fourth Workshop on Scheme and Functional Programming. The purpose of the Scheme Workshop is to discuss experience with and future developments of the Scheme programming language?including the future of Scheme standardization?as well as general aspects of computer science loosely centered on the general theme of Scheme
    corecore