12,175,937 research outputs found

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Electron energy-loss spectrometry on lithiated graphite

    Get PDF
    Transmission electron energy-loss spectrometry was used to investigate the electronic states of metallic Li and LiC6, which is the Li-intercalated graphite used in Li-ion batteries. The Li K edges of metallic Li and LiC6 were nearly identical, and the C K edges were only weakly affected by the presence of Li. These results suggest only a small charge transfer from Li to C in LiC6, contrary to prior results from surface spectra obtained by x-ray photoelectron spectroscopy. Effects of radiation damage and sample oxidation in the transmission electron microscopy are also reported

    Geometric, electronic properties and the thermodynamics of pure and Al--doped Li clusters

    Get PDF
    The first--principles density functional molecular dynamics simulations have been carried out to investigate the geometric, the electronic, and the finite temperature properties of pure Li clusters (Li10_{10}, Li12_{12}) and Al--doped Li clusters (Li10_{10}Al, Li10_{10}Al2_2). We find that addition of two Al impurities in Li10_{10} results in a substantial structural change, while the addition of one Al impurity causes a rearrangement of atoms. Introduction of Al--impurities in Li10_{10} establishes a polar bond between Li and nearby Al atom(s), leading to a multicentered bonding, which weakens the Li--Li metallic bonds in the system. These weakened Li--Li bonds lead to a premelting feature to occur at lower temperatures in Al--doped clusters. In Li10_{10}Al2_2, Al atoms also form a weak covalent bond, resulting into their dimer like behavior. This causes Al atoms not to `melt' till 800 K, in contrast to the Li atoms which show a complete diffusive behavior above 400 K. Thus, although one Al impurity in Li10_{10} cluster does not change its melting characteristics significantly, two impurities results in `surface melting' of Li atoms whose motions are confined around Al dimer.Comment: 9 pages, 7 figure

    The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54

    Full text link
    The cosmological Li problem is the observed discrepancy between Li abundance, A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally assumed to be equal to the initial value A(Li)_0), and that predicted by standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack the Li problem by considering an alternative diagnostic, namely the surface Li abundance of red giant branch stars that in a colour magnitude diagram populate the region between the completion of the first dredge-up and the red giant branch bump. We obtained high-resolution spectra with the FLAMES facility at the Very Large Telescope for a sample of red giants in the globular cluster M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11 dex, translating -- after taking into account the dilution due to the dredge up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on whether or not atomic diffusion is considered. This is the first measurement of Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0 in old stars obtained so far. The A(Li)_0 estimated in M54 is lower by ~0.35 dex than A(Li)_{BBN}, hence incompatible at a level of ~3sigma. Our result shows that this discrepancy is a universal problem concerning both the Milky Way and extra-galactic systems. Either modifications of BBN calculations, or a combination of atomic diffusion plus a suitably tuned additional mixing during the main sequence, need to be invoked to solve the discrepancy.Comment: Accepted by MNRAS, 10 pages, 5 figures, 1 tabl

    Effect of channel coupling on the elastic scattering of lithium isotopes

    Full text link
    Herein, we investigated the channel coupling (CC) effect on the elastic scatterings of lithium (Li) isotopes (A=A = 6--9) for the 12^{12}C and 28^{28}Si targets at E/A=E/A = 50--60 MeV. The wave functions of the Li isotopes were obtained using the stochastic multi-configuration mixing (SMCM) method based on the microscopic-cluster model. The proton radii of the 7^{7}Li, 8^{8}Li, and 9^{9}Li nuclei became smaller as the number of valence neutrons increased. The valence neutrons in the 8^{8}Li and 9^{9}Li nuclei exhibited a glue-like behavior, thereby attracting the α\alpha and tt clusters. Based on the transition densities derived from these microscopic wave functions, the elastic-scattering cross section was calculated using a microscopic coupled-channel (MCC) method with a complex GG-matrix interaction. The existing experimental data for the elastic scatterings of the Li isotopes and 10^{10}Be nuclei were well reproduced. The Li isotope elastic cross sections were demonstrated for the 12^{12}C and 28^{28}Si targets at E/AE/A =53 MeV. The glue-like effect of the valence neutrons on the Li isotope was clearly demonstrated by the CC effect on elastic scattering. Finally, we realize that the valence neutrons stabilized the bindings of the core parts and the CC effect related to core excitation was indeed reduced.Comment: 21 pages, 9 figures, 2 tables, accepted in Physical Review

    Finite temperature behavior of impurity doped Lithium cluster {\em viz} Li6_6Sn

    Get PDF
    We have carried out extensive isokinetic {\it ab initio} molecular dynamic simulations to investigate the finite temperature properties of the impurity doped cluster Li6_6Sn along with the host cluster Li7_7. The data obtained from about 20 temperatures and total simulation time of at least 3 ns is used to extract thermodynamical quantities like canonical specific heat. We observe a substantial charge transfer from all Li atoms to Sn which inturn weakens the Li-Li bonds in Li6_6Sn compared to the bonds in Li7_7. This weakening of bonds changes the finite temperature behavior of Li6_6Sn significantly. Firstly, Li6_6Sn becomes liquid-like around 250 K, a much lower temperature than that of Li7_7 (\approx~425 K). Secondly, an additional quasirotational motion of lithium atoms appears at lower temperatures giving rise to a shoulder around 50 K in the specific heat curve of Li6_6Sn. The peak in the specific heat of Li7_7 is very broad and the specific heat does not show any premelting features.Comment: 16 pages, 10 figures Submitted to J. Chem. Phy

    Observational constraints for Lithium depletion before the RGB

    Full text link
    Precise Li abundances are determined for 54 giant stars mostly evolving across the Hertzsprung gap. We combine these data with rotational velocity and with information related to the deepening of the convective zone of the stars to analyse their link to Li dilution in the referred spectral region. A sudden decline in Li abundance paralleling the one already established in rotation is quite clear. Following similar results for other stellar luminosity classes and spectral regions, there is no linear relation between Li abundance and rotation, in spite of the fact that most of the fast rotators present high Li content. The effects of convection in driving the Li dilution is also quite clear. Stars with high Li content are mostly those with an undeveloped convective zone, whereas stars with a developed convective zone present clear sign of Li dilution.Comment: 5 pages, 4 figures. accepted for publicatio
    corecore