458 research outputs found

    PhishDef: URL Names Say It All

    Full text link
    Phishing is an increasingly sophisticated method to steal personal user information using sites that pretend to be legitimate. In this paper, we take the following steps to identify phishing URLs. First, we carefully select lexical features of the URLs that are resistant to obfuscation techniques used by attackers. Second, we evaluate the classification accuracy when using only lexical features, both automatically and hand-selected, vs. when using additional features. We show that lexical features are sufficient for all practical purposes. Third, we thoroughly compare several classification algorithms, and we propose to use an online method (AROW) that is able to overcome noisy training data. Based on the insights gained from our analysis, we propose PhishDef, a phishing detection system that uses only URL names and combines the above three elements. PhishDef is a highly accurate method (when compared to state-of-the-art approaches over real datasets), lightweight (thus appropriate for online and client-side deployment), proactive (based on online classification rather than blacklists), and resilient to training data inaccuracies (thus enabling the use of large noisy training data).Comment: 9 pages, submitted to IEEE INFOCOM 201

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP

    Emerging Phishing Trends and Effectiveness of the Anti-Phishing Landing Page

    Full text link
    Each month, more attacks are launched with the aim of making web users believe that they are communicating with a trusted entity which compels them to share their personal, financial information. Phishing costs Internet users billions of dollars every year. Researchers at Carnegie Mellon University (CMU) created an anti-phishing landing page supported by Anti-Phishing Working Group (APWG) with the aim to train users on how to prevent themselves from phishing attacks. It is used by financial institutions, phish site take down vendors, government organizations, and online merchants. When a potential victim clicks on a phishing link that has been taken down, he / she is redirected to the landing page. In this paper, we present the comparative analysis on two datasets that we obtained from APWG's landing page log files; one, from September 7, 2008 - November 11, 2009, and other from January 1, 2014 - April 30, 2014. We found that the landing page has been successful in training users against phishing. Forty six percent users clicked lesser number of phishing URLs from January 2014 to April 2014 which shows that training from the landing page helped users not to fall for phishing attacks. Our analysis shows that phishers have started to modify their techniques by creating more legitimate looking URLs and buying large number of domains to increase their activity. We observed that phishers are exploiting ICANN accredited registrars to launch their attacks even after strict surveillance. We saw that phishers are trying to exploit free subdomain registration services to carry out attacks. In this paper, we also compared the phishing e-mails used by phishers to lure victims in 2008 and 2014. We found that the phishing e-mails have changed considerably over time. Phishers have adopted new techniques like sending promotional e-mails and emotionally targeting users in clicking phishing URLs

    Predicting Phishing Websites using Neural Network trained with Back-Propagation

    Get PDF
    Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this article, we propose a model for predicting phishing attacks based on Artificial Neural Network (ANN). A Feed Forward Neural Network trained by Back Propagation algorithm is developed to classify websites as phishing or legitimate. The suggested model shows high acceptance ability for noisy data, fault tolerance and high prediction accuracy with respect to false positive and false negative rates

    HTMLPhish: Enabling Phishing Web Page Detection by Applying Deep Learning Techniques on HTML Analysis

    Get PDF
    Recently, the development and implementation of phishing attacks require little technical skills and costs. This uprising has led to an ever-growing number of phishing attacks on the World Wide Web. Consequently, proactive techniques to fight phishing attacks have become extremely necessary. In this paper, we propose HTMLPhish, a deep learning based datadriven end-to-end automatic phishing web page classification approach. Specifically, HTMLPhish receives the content of the HTML document of a web page and employs Convolutional Neural Networks (CNNs) to learn the semantic dependencies in the textual contents of the HTML. The CNNs learn appropriate feature representations from the HTML document embeddings without extensive manual feature engineering. Furthermore, our proposed approach of the concatenation of the word and character embeddings allows our model to manage new features and ensure easy extrapolation to test data. We conduct comprehensive experiments on a dataset of more than 50,000 HTML documents that provides a distribution of phishing to benign web pages obtainable in the real-world that yields over 93% Accuracy and True Positive Rate. Also, HTMLPhish is a completely language-independent and client-side strategy which can, therefore, conduct web page phishing detection regardless of the textual language

    Parameter optimization for intelligent phishing detection using Adaptive Neuro-Fuzzy

    Get PDF
    Phishing attacks has been growing rapidly in the past few years. As a result, a number of approaches have been proposed to address the problem. Despite various approaches proposed such as feature-based and blacklist-based via machine learning techniques, there is still a lack of accuracy and real-time solution. Most approaches applying machine learning techniques requires that parameters are tuned to solve a problem, but parameters are difficult to tune to a desirable output. This study presents a parameter tuning framework, using adaptive Neuron-fuzzy inference system with comprehensive data to maximize systems performance. Extensive experiment was conducted. During ten-fold cross-validation, the data is split into training and testing pairs and parameters are set according to desirable output and have achieved 98.74% accuracy. Our results demonstrated higher performance compared to other results in the field. This paper contributes new comprehensive data, novel parameter tuning method and applied a new algorithm in a new field. The implication is that adaptive neuron-fuzzy system with effective data and proper parameter tuning can enhance system performance. The outcome will provide a new knowledge in the field
    • …
    corecore