813 research outputs found

    Reliable and Energy Efficient MLC STT-RAM Buffer for CNN Accelerators

    Get PDF
    We propose a lightweight scheme where the formation of a data block is changed in such a way that it can tolerate soft errors significantly better than the baseline. The key insight behind our work is that CNN weights are normalized between -1 and 1 after each convolutional layer, and this leaves one bit unused in half-precision floating-point representation. By taking advantage of the unused bit, we create a backup for the most significant bit to protect it against the soft errors. Also, considering the fact that in MLC STT-RAMs the cost of memory operations (read and write), and reliability of a cell are content-dependent (some patterns take larger current and longer time, while they are more susceptible to soft error), we rearrange the data block to minimize the number of costly bit patterns. Combining these two techniques provides the same level of accuracy compared to an error-free baseline while improving the read and write energy by 9% and 6%, respectively

    Comprehensive Evaluation of Supply Voltage Underscaling in FPGA on-Chip Memories

    Get PDF
    In this work, we evaluate aggressive undervolting, i.e., voltage scaling below the nominal level to reduce the energy consumption of Field Programmable Gate Arrays (FPGAs). Usually, voltage guardbands are added by chip vendors to ensure the worst-case process and environmental scenarios. Through experimenting on several FPGA architectures, we measure this voltage guardband to be on average 39% of the nominal level, which in turn, delivers more than an order of magnitude power savings. However, further undervolting below the voltage guardband may cause reliability issues as the result of the circuit delay increase, i.e., start to appear faults. We extensively characterize the behavior of these faults in terms of the rate, location, type, as well as sensitivity to environmental temperature, with a concentration of on-chip memories, or Block RAMs (BRAMs). Finally, we evaluate a typical FPGA-based Neural Network (NN) accelerator under low-voltage BRAM operations. In consequence, the substantial NN energy savings come with the cost of NN accuracy loss. To attain power savings without NN accuracy loss, we propose a novel technique that relies on the deterministic behavior of undervolting faults and can limit the accuracy loss to 0.1% without any timing-slack overhead.Peer ReviewedPostprint (author's final draft

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    The Effects of Approximate Multiplication on Convolutional Neural Networks

    Full text link
    This paper analyzes the effects of approximate multiplication when performing inferences on deep convolutional neural networks (CNNs). The approximate multiplication can reduce the cost of the underlying circuits so that CNN inferences can be performed more efficiently in hardware accelerators. The study identifies the critical factors in the convolution, fully-connected, and batch normalization layers that allow more accurate CNN predictions despite the errors from approximate multiplication. The same factors also provide an arithmetic explanation of why bfloat16 multiplication performs well on CNNs. The experiments are performed with recognized network architectures to show that the approximate multipliers can produce predictions that are nearly as accurate as the FP32 references, without additional training. For example, the ResNet and Inception-v4 models with Mitch-ww6 multiplication produces Top-5 errors that are within 0.2% compared to the FP32 references. A brief cost comparison of Mitch-ww6 against bfloat16 is presented, where a MAC operation saves up to 80% of energy compared to the bfloat16 arithmetic. The most far-reaching contribution of this paper is the analytical justification that multiplications can be approximated while additions need to be exact in CNN MAC operations.Comment: 12 pages, 11 figures, 4 tables, accepted for publication in the IEEE Transactions on Emerging Topics in Computin

    A Survey on Design Methodologies for Accelerating Deep Learning on Heterogeneous Architectures

    Full text link
    In recent years, the field of Deep Learning has seen many disruptive and impactful advancements. Given the increasing complexity of deep neural networks, the need for efficient hardware accelerators has become more and more pressing to design heterogeneous HPC platforms. The design of Deep Learning accelerators requires a multidisciplinary approach, combining expertise from several areas, spanning from computer architecture to approximate computing, computational models, and machine learning algorithms. Several methodologies and tools have been proposed to design accelerators for Deep Learning, including hardware-software co-design approaches, high-level synthesis methods, specific customized compilers, and methodologies for design space exploration, modeling, and simulation. These methodologies aim to maximize the exploitable parallelism and minimize data movement to achieve high performance and energy efficiency. This survey provides a holistic review of the most influential design methodologies and EDA tools proposed in recent years to implement Deep Learning accelerators, offering the reader a wide perspective in this rapidly evolving field. In particular, this work complements the previous survey proposed by the same authors in [203], which focuses on Deep Learning hardware accelerators for heterogeneous HPC platforms

    MPGemmFI: A Fault Injection Technique for Mixed Precision GEMM in ML Applications

    Full text link
    Emerging deep learning workloads urgently need fast general matrix multiplication (GEMM). To meet such demand, one of the critical features of machine-learning-specific accelerators such as NVIDIA Tensor Cores, AMD Matrix Cores, and Google TPUs is the support of mixed-precision enabled GEMM. For DNN models, lower-precision FP data formats and computation offer acceptable correctness but significant performance, area, and memory footprint improvement. While promising, the mixed-precision computation on error resilience remains unexplored. To this end, we develop a fault injection framework that systematically injects fault into the mixed-precision computation results. We investigate how the faults affect the accuracy of machine learning applications. Based on the error resilience characteristics, we offer lightweight error detection and correction solutions that significantly improve the overall model accuracy if the models experience hardware faults. The solutions can be efficiently integrated into the accelerator's pipelines
    corecore