835 research outputs found

    Distributed Estimation and Control of Algebraic Connectivity over Random Graphs

    Full text link
    In this paper we propose a distributed algorithm for the estimation and control of the connectivity of ad-hoc networks in the presence of a random topology. First, given a generic random graph, we introduce a novel stochastic power iteration method that allows each node to estimate and track the algebraic connectivity of the underlying expected graph. Using results from stochastic approximation theory, we prove that the proposed method converges almost surely (a.s.) to the desired value of connectivity even in the presence of imperfect communication scenarios. The estimation strategy is then used as a basic tool to adapt the power transmitted by each node of a wireless network, in order to maximize the network connectivity in the presence of realistic Medium Access Control (MAC) protocols or simply to drive the connectivity toward a desired target value. Numerical results corroborate our theoretical findings, thus illustrating the main features of the algorithm and its robustness to fluctuations of the network graph due to the presence of random link failures.Comment: To appear in IEEE Transactions on Signal Processin

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Reconfigurable Optical Datacom Networks by Self-supervised Learning

    Get PDF
    This paper presents a self-supervised machine learning approach for cognitive reconfiguration in a Hyper-X-like flexible-bandwidth optical interconnect architecture. The proposed approach makes use of a clustering algorithm to learn the traffic patterns from historical traces. A heuristic algorithm is developed for optimizing the connectivity graph for each identified traffic pattern. Further, to mitigate the scalability issue induced by frequent clustering operations, we parameterize the learned traffic patterns by a deep neural network classifier. The classifier is trained offline by supervised learning to enable classification of traffic matrices during online operations, thereby facilitating cognitive reconfiguration decision making. Simulation results show that compared with a static all-to-all interconnection, the proposed approach can improve throughput by up to 1.76Ă— while reducing end-to-end packet latency and flow completion time by up to 2.8Ă— and 25Ă—, respectively

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Soft-connected Rigid Body Localization: State-of-the-Art and Research Directions for 6G

    Full text link
    This white paper describes a proposed article that will aim to provide a thorough study of the evolution of the typical paradigm of wireless localization (WL), which is based on a single point model of each target, towards wireless rigid body localization (W-RBL). We also look beyond the concept of RBL itself, whereby each target is modeled as an independent multi-point three-dimensional (3D), with shape enforced via a set of conformation constraints, as a step towards a more general approach we refer to as soft-connected RBL, whereby an ensemble of several objects embedded in a given environment, is modeled as a set of soft-connected 3D objects, with rigid and soft conformation constraints enforced within each object and among them, respectively. A first intended contribution of the full version of this article is a compact but comprehensive survey on mechanisms to evolve WL algorithms in W-RBL schemes, considering their peculiarities in terms of the type of information, mathematical approach, and features the build on or offer. A subsequent contribution is a discussion of mechanisms to extend W-RBL techniques to soft-connected rigid body localization (SCW-RBL) algorithms
    • …
    corecore