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ABSTRACT
This paper presents a self-supervised machine learning approach
for cognitive reconfiguration in a Hyper-X-like flexible-bandwidth
optical interconnect architecture. The proposed approach makes
use of a clustering algorithm to learn the traffic patterns from his-
torical traces. A heuristic algorithm is developed for optimizing the
connectivity graph for each identified traffic pattern. Further, to
mitigate the scalability issue induced by frequent clustering opera-
tions, we parameterize the learned traffic patterns by a deep neural
network classifier. The classifier is trained offline by supervised
learning to enable classification of traffic matrices during online
operations, thereby facilitating cognitive reconfiguration decision
making. Simulation results show that compared with a static all-to-
all interconnection, the proposed approach can improve throughput
by up to 1.76× while reducing end-to-end packet latency and flow
completion time by up to 2.8× and 25×, respectively.
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1 INTRODUCTION
Today’s data center (DC) and high-performance computing (HPC)
systems leverage multi-hierarchy tree topologies [1, 14] and elec-
tronic packet switching. Their poor scalability and energy efficiency
make it difficult to sustain the ever-growing demand for cloud ser-
vices and HPC applications (e.g., scientific computing, deep learning
workloads). Thanks to recent advances in scalable and manufac-
turable silicon-photonic technologies [13], flat and disruptive op-
tical interconnect architectures scaling up to tens of thousands
of terminals by enabling direct (thus, low-diameter) wavelength
switching between racks [4, 13, 16] have been recognized as promis-
ing solutions for meeting the above challenges.

On the other hand, the application-driven nature of the commu-
nication patterns between the computing nodes makes DC/HPC

traffic exhibit high dynamicity and spatial nonuniformity. There-
fore, effective reconfiguration schemes are essential to fully exploit
the benefits of optical interconnects and ensure consistent sys-
tem performance [5, 18]. The authors in [16] proposed a hybrid
optical/electrical switching-based reconfigurable network topol-
ogy leveraging heuristic algorithms for determining the wiring and
bandwidth steering schemes for different traffic profiles. In [17], the
authors leveraged a deep learning approach to learn the mapping
between the traffic distribution and the optimal topology config-
uration. Note that reconfiguration operations can be very costly
and even cause traffic disruptions as they involve reconfiguring
optical switches and routing tables in all related top-of-racks (ToRs).
Hence, it is desirable to implement effective reconfiguration poli-
cies guiding when reconfiguration should be performed. The work
in [15] applied deep reinforcement learning to learn autonomic
reconfiguration policies from repeated trials and errors. However,
such an approach was only demonstrated under a small-scale sys-
tem and can hardly scale. Our previous work in [7] proposed a
cognitive reconfiguration policy relying on performance (i.e., la-
tency, packet loss rate) estimations by deep neural network (DNN)
models. Nevertheless, training the DNN models requires collecting
a large amount of performance data, introducing non-negligible
operation overheads. Meanwhile, the approach still makes use of
a fixed-threshold-based policy applied to the performance estima-
tions.

In this paper, we target a Hyper-X-type flexible-bandwidth op-
tical interconnect architecture [2] and propose a self-supervised
machine learning (ML) approach for cognitive reconfiguration de-
cision making. We first discuss the data and control plane arrange-
ment of the considered interconnect architecture in Section 2. In
Sections 3 and 4, we detail the proposed cognitive reconfiguration
design and present the evaluation results. Finally, we conclude the
paper with Section 5.

2 SYSTEM ARCHITECTURE
This paper considers a Hyper-X-like directly connected architec-
ture, where the ToR switches are fully connected in each dimension.
Each ToR switch connects to a certain number of servers (or com-
puting nodes). Fig. 1 shows an architecture with 𝑁 ToRs in each
dimension of a 2D Hyper-X. Each column (or row) is a cluster (often
referred to as portable data centers - PODs) with𝑁 ToR switches per
POD. The intra-POD connectivity in each dimension is augmented
with wavelength-space selective optical switches that allow recon-
figuring the topology and bandwidth (number of links between
ToR pairs) based on certain algorithms and policies (which will be
discussed in Section 3). Fig. 1(a-top) shows the default connectivity
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Figure 1: (a) 2D-Hyper-X architecture: each blue node represents a ToR switch. (Top) Default all-to-all connectivity. (Bottom)
Example of reconfiguration to increase the bandwidth between specific ToR pairs. (b) Detailed diagram of the architecture
with 𝑁 = 𝑘/4 PODs, with each PODs containing 2𝑁 servers and 𝑁 𝑘-port ToRs (𝑘 = 4𝑁 ).

inside a POD, which is all-to-all. This is ideal for the case where the
traffic is evenly distributed. In the common case of uneven traffic
distributions with hotspots, it can be desirable to break the all-to-
all connectivity to give more bandwidth (links) where and when
is needed. This is shown in Fig. 1(a-bottom), where the red links
represent the links/bandwidth that have been steered from other
ToRs. As shown in Fig. 1(b), each ToR switch uses 2𝑁 ports for
servers (intra-rack) and 2𝑁 ports for inter-rack (𝑁 ports for each
dimension of the Hyper-X). This means that the oversubscription of
the network is 1 : 1 (other oversubscription values are possible and
represent a trade-off between scalability, performance and cost). We
assume thatWDMTRXswith𝑁 wavelengths are used for inter-rack
ports and that the radix of the optical switches is 𝑁 . If we consider
state-of-the-art switch ASICs with 𝑘 = 4𝑁 = 128 ports at 100 Gb/s,
this 2D Hyper-X architecture can scale to 𝑘3/32 = 65, 536 servers,
while requiring optical switches with limited radix 𝑁 = 𝑘/4 = 32
and number of wavelengths 𝑁 = 𝑘/4 = 32.

To facilitate scalable management of the 2D Hyper-X architec-
ture, we consider a distributed software-defined networking (SDN)
control plane arrangement, where a dedicated SDN controller is de-
ployed for each switching domain (i.e., a POD or inter-POD switch-
ing fabric). The SDN controllers perform parallel reconfiguration
and exchange necessary information to facilitate system-wide opti-
mization.

3 RECONFIGURATION DESIGN
Fig. 2 shows the layout of control plane functionality facilitating the
proposed reconfiguration design. An SDN controller communicates
with the related ToRs and optical switches through SDN protocols
(e.g., OpenFlow, P4) to perform real-time monitoring of data plane
states and distribute configuration instructions. Interfacing with
the SDN controller, the reconfiguration module drives cognitive
reconfiguration decision making. Specifically, the reconfiguration
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Figure 2: Layout of control plane functionality.

module makes use of a compound of ML and traditional optimiza-
tion tools. The reconfiguration manager constantly estimates the
traffic demand between ToRs by retrieving information such as
flow counters from the traffic engineering database [10]. Each time
the reconfiguration manager observes changes in the estimated
traffic matrix, it invokes the ML module to generate a reconfigu-
ration solution. Let D denote the set of traffic matrices recorded
over time and 𝐷𝑡 represent the traffic matrix monitored at time 𝑡 .
An unsupervised learning module is first employed to learn traffic
patterns fromD, i.e., by clustering traffic matrices inD according to
their mutual distances. In this work, we applied the density-based
clustering algorithm developed in [9] owing to its capability of
detecting clusters of arbitrary shapes. Meanwhile, we adopt the
Euclidean distance as the distance metric. Because traffic matrices
belonging to the same clusters exhibit similar patterns, we make
the connectivity graph & routing optimization module (will be de-
tailed later) precompute a common configuration scheme for each
cluster C𝑖 . This way, the reconfiguration manager can promptly

2



Reconfigurable Optical Datacom Networks by Self-supervised Learning OptSys’2021, August 23, 2021, Online

Algorithm 1 Procedures of calculating connectivity graphs.
1: Input: 𝑆 , 𝑁 , C𝑖
2: Output:𝐺
3: 𝑥𝑠 ← 𝑁 − 1, 𝑦𝑠 ← 𝑁 − 1, ∀𝑠 ∈ 𝑆
4: 𝐺𝑢,𝑣 ← 0, ∀𝑢, 𝑣 ∈ 𝑆
5: 𝐷 ← 1

|C𝑖 |
∑
𝐷𝑡 ∈C𝑖 𝐷𝑡 ,𝑊 ← 𝐷

6: for 𝑛 ∈ [1, 𝑁 − 1] do
7: 𝑟𝑠 ← 0, ∀𝑠 ∈𝑆
8: for each ToR 𝑠 ∈ 𝑆 do

9: 𝑤𝑢 ←
{
max{𝑊𝑠,𝑢 · 𝑥𝑠 ,𝑊𝑢,𝑠 · 𝑦𝑢 }, 𝑥𝑠 · 𝑦𝑢 > 0
−∞, 𝑒𝑙𝑠𝑒 , ∀𝑢 ∈ 𝑆 \ 𝑠

10: if 𝑟𝑠 == 1 ORmax𝑢 𝑤𝑢 ≤ 0 then
11: continue
12: end if
13: 𝑢∗ ← argmax𝑢 (𝑤𝑢 )
14: 𝑥𝑢∗ ← 𝑥𝑢∗ − 1, 𝑦𝑢∗ ← 𝑦𝑢∗ − 1
15: 𝑥𝑠 ← 𝑥𝑠 − 1, 𝑦𝑠 ← 𝑦𝑠 − 1
16: 𝐺𝑠,𝑢∗ ← 𝐺𝑠,𝑢∗ + 1,𝐺𝑢∗,𝑠 ← 𝐺𝑢∗,𝑠 + 1
17: 𝑊𝑠,𝑢∗ ←𝑊𝑠,𝑢∗ −𝐶,𝑊𝑢∗,𝑠 ←𝑊𝑢∗,𝑠 −𝐶
18: 𝑟𝑢∗ ← 1
19: end for
20: end for

decide the reconfiguration solution by simply identifying whether
𝐷𝑡 and𝐷𝑡−1 belong to the same cluster, and if not, which cluster𝐷𝑡

resides in. More importantly, by exploiting the inherent structure
of the traffic data, we can determine the most effective reconfigura-
tion point while largely eliminating unnecessary reconfiguration
operations.

Each execution of the unsupervised learning module requires
traversing the whole data set, which can be computationally costly
when the size of D is large. Therefore, we further introduce a su-
pervised learning module for online operations, which we train
with knowledge extracted by the unsupervised learning module,
similar to the idea presented in [6]. More specifically, we design the
supervised learning module with a DNN architecture, which takes
as input 𝐷𝑡 and outputs the predicted cluster ID. The complexity
of the supervised learning module (after it has been trained) is
only related to the scale of the DNN implemented, and therefore,
does not incur scalability issues. In addition, for 𝐷𝑡 that cannot
be classified into any of the existing clusters (i.e., an outlier), the
reconfiguration manager instructs the SDN controller to maintain
all-to-all interconnects for the related ToRs.

Next, we elaborate on the design of the connectivity graph& rout-
ing optimization module. In particular, we apply a two-phase opti-
mization approach where connectivity graphs and routing schemes
are determined successively. Algorithm 1 shows the procedures
of calculating the connectivity graph 𝐺 for a set of ToRs 𝑆 and a
traffic cluster C𝑖 . In Lines 3-4, we initialize the number of available
input (𝑥𝑠 ) and output ports (𝑦𝑠 ) in each ToR 𝑠 to be 𝑁 − 1, and the
number of links configured for each ToR pair as 0. Line 5 calculates
the mean of C𝑖 as the reference traffic matrix. The for-loop cover-
ing Lines 6-20 traverses all the ports and iteratively adds links to
ToR pairs with larger amounts of traffic to be served. Within the
loop, we first set 𝑟𝑠 as 0 for all ToRs with Line 7 to indicate that the
corresponding ports of these ToRs have not yet been touched. The
inner loop from Line 8 to 19 determines for each ToR 𝑠 a target ToR
𝑢∗ to whom the current port should be connected. In Line 9, we
assign each other ToR 𝑢 a weight by calculating the products of the
amounts of traffic remaining to be served between 𝑠 and 𝑢 (𝑊𝑠,𝑢

and𝑊𝑢,𝑠 ) and the numbers of available ports in them (𝑥𝑠 and 𝑦𝑢 ),
i.e., to encourage adding links to ToR pairs with larger demands

and more spare ports. Note that, since the connectivity between
ToRs needs to be bidirectional, we set the larger value of a product
from the two directions as the weight. Meanwhile, we exclude ToRs
that do not have any spare port by setting the related weights to
be negative infinity. With Lines 10-12, we skip ToRs whose current
ports have already been configured or for which sufficient capac-
ities have been allocated. Line 13 picks ToR 𝑢∗ with the largest
weight as the target ToR. Finally, we update the connectivity graph
𝐺 , the information of port utilization and traffic volume remaining
to be served, and ToR port utilization indicator in Lines 14-18. After
𝐺 has been determined, we apply the equal-cost multipath routing
algorithm [11] to determine the routing scheme for each flow, for
its advantage of facilitating load balancing and robustness against
network failures.

4 PERFORMANCE EVALUATION
We evaluated the performance of the proposed design by packet-
level simulations using the NetBench simulator [12]. A POD of 64
ToRs was considered. In the simulations, we assumed that each
link has a capacity of 10 Gbps and is associated with a delay of 20
ns. The buffer size of each ToR port was set as 150, 000 bytes. We
made servers generate packet flows following Poisson processes.
The source and destination nodes of each flow were selected based
on the traffic distributions derived from the traffic matrices for
evaluation. The upper bound of Alizadeh Web Search distribution
[3] was used to determine the sizes of flows. To emulate various
traffic patterns, we used both synthetic traffic matrices and real
HPC application traces, i.e., algebraic multi-grid (AMG), center for
exascale simulation of advanced reactors (CESAR) and FFT [7, 8].
The two synthetic traffic matrices were generated by randomly se-
lecting 30% and 50% of the ToR pairs to generate demands following
a uniform distribution. We expanded the data set by adding zero-
mean random noises to each of these traffic matrices and obtained
a total of 1, 000 instances.

We first assessed the performance of the ML modules in terms
of their accuracy in detecting clusters or classifying traffic matri-
ces. For the clustering algorithm, we set Y and 𝑀𝑖𝑛𝑃𝑡𝑠 to be 46
and 100, respectively, using the method discussed in [6]. With this
setup, the clustering algorithm successfully detected five clusters
(cluster ID ranging from 0 to 4) along with 77 outliers (labeled as
belonging to cluster -1) from the entire data set. Based on the clus-
tering results, we implemented and trained a DNN classifier of two
fully-connected layers (15 neurons in each layer). The normalized
confusion matrix in Fig. 3(a) shows the accuracy performance of
the DNN classifier on the testing data set (15% of the entire data
set randomly drawn). The results indicate that the DNN classifier
can achieve a classification accuracy of at least 94.5% for samples
belonging to the five clusters. For outliers with much fewer samples
used in training, the classifier can still achieve accuracy over 88%.

Next, we evaluated the system-level performance of the recon-
figuration design and compared it with a baseline always adopting
an all-to-all interconnection scheme (like in a regular Hyper-X net-
work). Figs. 3(b) and (c) present the results of the average packet
latency and 99𝑡ℎ percentile FCT for the AMG trace under differ-
ent flow arrival rates _ (i.e., network loads). We can see that the
performance of the two approaches is comparable at low loads
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Figure 3: Results: (a) classification accuracy of the DNN classifier; (b)-(c) comparisons of average packet latency and 99𝑡ℎ per-
centile flow completion time (FCT) between the proposed design and the baseline; (d)-(f) latency, FCT and throughput im-
provements from the proposed design against the baseline with respect to different clusters.

(_ < 40, 000) when the links are underutilized. As we kept increas-
ing _, the performance of the reconfiguration design remains stable,
whereas that of the baseline deteriorates dramatically. This is be-
cause the proposed approach can effectively steer the bandwidth to
where it is needed, thus offering much higher throughput and miti-
gating link congestion. The results for traffic matrices belonging to
other clusters show similar trends. We summarize the performance
gains of the proposed design against the baseline with respect to
different clusters (_ = 60, 000) in Figs. 3(d)-(f). The results show
that the proposed design outperforms the baseline in all the cases.
It can also be seen that the benefits from reconfiguration vary sig-
nificantly (e.g., the reduction in FCT from the proposed design can
range from below 10% to as high as 96%), depending on how skewed
traffic matrices are [e.g., CESAR (cluster 3) versus FFT (cluster 4)].

5 CONCLUSION
In this paper, we proposed a self-supervised ML approach to assist
cognitive bandwidth reconfiguration considering a Hyper-X-type
optical interconnect architecture with link bandwidth flexibility.
Evaluation results show that our approach achieves significant
latency, FCT and throughput improvements over the regular all-
to-all baseline. Future research directions include: (1) developing
tools for joint connectivity graph and routing optimization and (2)
extending the proposed design to hyper-scale systems composed
of multiple parallel intra- and inter-POD switching fabrics.
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