2,400 research outputs found

    MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System

    Full text link
    Multi-modal sarcasm detection has attracted much recent attention. Nevertheless, the existing benchmark (MMSD) has some shortcomings that hinder the development of reliable multi-modal sarcasm detection system: (1) There are some spurious cues in MMSD, leading to the model bias learning; (2) The negative samples in MMSD are not always reasonable. To solve the aforementioned issues, we introduce MMSD2.0, a correction dataset that fixes the shortcomings of MMSD, by removing the spurious cues and re-annotating the unreasonable samples. Meanwhile, we present a novel framework called multi-view CLIP that is capable of leveraging multi-grained cues from multiple perspectives (i.e., text, image, and text-image interaction view) for multi-modal sarcasm detection. Extensive experiments show that MMSD2.0 is a valuable benchmark for building reliable multi-modal sarcasm detection systems and multi-view CLIP can significantly outperform the previous best baselines.Comment: Accepted by ACL2023 Finding

    Semantic multimedia analysis using knowledge and context

    Get PDF
    PhDThe difficulty of semantic multimedia analysis can be attributed to the extended diversity in form and appearance exhibited by the majority of semantic concepts and the difficulty to express them using a finite number of patterns. In meeting this challenge there has been a scientific debate on whether the problem should be addressed from the perspective of using overwhelming amounts of training data to capture all possible instantiations of a concept, or from the perspective of using explicit knowledge about the concepts’ relations to infer their presence. In this thesis we address three problems of pattern recognition and propose solutions that combine the knowledge extracted implicitly from training data with the knowledge provided explicitly in structured form. First, we propose a BNs modeling approach that defines a conceptual space where both domain related evi- dence and evidence derived from content analysis can be jointly considered to support or disprove a hypothesis. The use of this space leads to sig- nificant gains in performance compared to analysis methods that can not handle combined knowledge. Then, we present an unsupervised method that exploits the collective nature of social media to automatically obtain large amounts of annotated image regions. By proving that the quality of the obtained samples can be almost as good as manually annotated images when working with large datasets, we significantly contribute towards scal- able object detection. Finally, we introduce a method that treats images, visual features and tags as the three observable variables of an aspect model and extracts a set of latent topics that incorporates the semantics of both visual and tag information space. By showing that the cross-modal depen- dencies of tagged images can be exploited to increase the semantic capacity of the resulting space, we advocate the use of all existing information facets in the semantic analysis of social media

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Annotation-free Audio-Visual Segmentation

    Full text link
    The objective of Audio-Visual Segmentation (AVS) is to locate sounding objects within visual scenes by accurately predicting pixelwise segmentation masks. In this paper, we present the following contributions: (i), we propose a scalable and annotation-free pipeline for generating artificial data for the AVS task. We leverage existing image segmentation and audio datasets to draw links between category labels, image-mask pairs, and audio samples, which allows us to easily compose (image, audio, mask) triplets for training AVS models; (ii), we introduce a novel Audio-Aware Transformer (AuTR) architecture that features an audio-aware query-based transformer decoder. This architecture enables the model to search for sounding objects with the guidance of audio signals, resulting in more accurate segmentation; (iii), we present extensive experiments conducted on both synthetic and real datasets, which demonstrate the effectiveness of training AVS models with synthetic data generated by our proposed pipeline. Additionally, our proposed AuTR architecture exhibits superior performance and strong generalization ability on public benchmarks. The project page is https://jinxiang-liu.github.io/anno-free-AVS/.Comment: Under Revie

    M3PT: A Multi-Modal Model for POI Tagging

    Full text link
    POI tagging aims to annotate a point of interest (POI) with some informative tags, which facilitates many services related to POIs, including search, recommendation, and so on. Most of the existing solutions neglect the significance of POI images and seldom fuse the textual and visual features of POIs, resulting in suboptimal tagging performance. In this paper, we propose a novel Multi-Modal Model for POI Tagging, namely M3PT, which achieves enhanced POI tagging through fusing the target POI's textual and visual features, and the precise matching between the multi-modal representations. Specifically, we first devise a domain-adaptive image encoder (DIE) to obtain the image embeddings aligned to their gold tags' semantics. Then, in M3PT's text-image fusion module (TIF), the textual and visual representations are fully fused into the POIs' content embeddings for the subsequent matching. In addition, we adopt a contrastive learning strategy to further bridge the gap between the representations of different modalities. To evaluate the tagging models' performance, we have constructed two high-quality POI tagging datasets from the real-world business scenario of Ali Fliggy. Upon the datasets, we conducted the extensive experiments to demonstrate our model's advantage over the baselines of uni-modality and multi-modality, and verify the effectiveness of important components in M3PT, including DIE, TIF and the contrastive learning strategy.Comment: Accepted by KDD 202

    CMNER: A Chinese Multimodal NER Dataset based on Social Media

    Full text link
    Multimodal Named Entity Recognition (MNER) is a pivotal task designed to extract named entities from text with the support of pertinent images. Nonetheless, a notable paucity of data for Chinese MNER has considerably impeded the progress of this natural language processing task within the Chinese domain. Consequently, in this study, we compile a Chinese Multimodal NER dataset (CMNER) utilizing data sourced from Weibo, China's largest social media platform. Our dataset encompasses 5,000 Weibo posts paired with 18,326 corresponding images. The entities are classified into four distinct categories: person, location, organization, and miscellaneous. We perform baseline experiments on CMNER, and the outcomes underscore the effectiveness of incorporating images for NER. Furthermore, we conduct cross-lingual experiments on the publicly available English MNER dataset (Twitter2015), and the results substantiate our hypothesis that Chinese and English multimodal NER data can mutually enhance the performance of the NER model

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy
    • …
    corecore