5,417 research outputs found

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model

    Get PDF

    Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey

    Full text link
    Knowledge Graphs (KGs) play a pivotal role in advancing various AI applications, with the semantic web community's exploration into multi-modal dimensions unlocking new avenues for innovation. In this survey, we carefully review over 300 articles, focusing on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm. We begin by defining KGs and MMKGs, then explore their construction progress. Our review includes two primary task categories: KG-aware multi-modal learning tasks, such as Image Classification and Visual Question Answering, and intrinsic MMKG tasks like Multi-modal Knowledge Graph Completion and Entity Alignment, highlighting specific research trajectories. For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research. Finally, we discuss current challenges and identify emerging trends, such as progress in Large Language Modeling and Multi-modal Pre-training strategies. This survey aims to serve as a comprehensive reference for researchers already involved in or considering delving into KG and multi-modal learning research, offering insights into the evolving landscape of MMKG research and supporting future work.Comment: Ongoing work; 41 pages (Main Text), 55 pages (Total), 11 Tables, 13 Figures, 619 citations; Paper list is available at https://github.com/zjukg/KG-MM-Surve

    A Survey of Quantum-Cognitively Inspired Sentiment Analysis Models

    Full text link
    Quantum theory, originally proposed as a physical theory to describe the motions of microscopic particles, has been applied to various non-physics domains involving human cognition and decision-making that are inherently uncertain and exhibit certain non-classical, quantum-like characteristics. Sentiment analysis is a typical example of such domains. In the last few years, by leveraging the modeling power of quantum probability (a non-classical probability stemming from quantum mechanics methodology) and deep neural networks, a range of novel quantum-cognitively inspired models for sentiment analysis have emerged and performed well. This survey presents a timely overview of the latest developments in this fascinating cross-disciplinary area. We first provide a background of quantum probability and quantum cognition at a theoretical level, analyzing their advantages over classical theories in modeling the cognitive aspects of sentiment analysis. Then, recent quantum-cognitively inspired models are introduced and discussed in detail, focusing on how they approach the key challenges of the sentiment analysis task. Finally, we discuss the limitations of the current research and highlight future research directions
    • …
    corecore