62 research outputs found

    Analysis and Automated Discovery of Attacks in Transport Protocols

    Get PDF
    Transport protocols like TCP and QUIC are a crucial component of today’s Internet, underlying services as diverse as email, file transfer, web browsing, video conferencing, and instant messaging as well as infrastructure protocols like BGP and secure network protocols like TLS. Transport protocols provide a variety of important guarantees like reliability, in-order delivery, and congestion control to applications. As a result, the design and implementation of transport protocols is complex, with many components, special cases, interacting features, and efficiency considerations, leading to a high probability of bugs. Unfortunately, today the testing of transport protocols is mainly a manual, ad-hoc process. This lack of systematic testing has resulted in a steady stream of attacks compromising the availability, performance, or security of transport protocols, as seen in the literature. Given the importance of these protocols, we believe that there is a need for the development of automated systems to identify complex attacks in implementations of these protocols and for a better understanding of the types of attacks that will be faced by next generation transport protocols. In this dissertation, we focus on improving this situation, and the security of transport protocols, in three ways. First, we develop a system to automatically search for attacks that target the availability or performance of protocol connections on real transport protocol implementations. Second, we implement a model-based system to search for attacks against implementations of TCP congestion control. Finally, we examine QUIC, Google’s next generation encrypted transport protocol, and identify attacks on availability and performance

    A Framework for File Format Fuzzing with Genetic Algorithms

    Get PDF
    Secure software, meaning software free from vulnerabilities, is desirable in today\u27s marketplace. Consumers are beginning to value a product\u27s security posture as well as its functionality. Software development companies are recognizing this trend, and they are factoring security into their entire software development lifecycle. Secure development practices like threat modeling, static analysis, safe programming libraries, run-time protections, and software verification are being mandated during product development. Mandating these practices improves a product\u27s security posture before customer delivery, and these practices increase the difficulty of discovering and exploiting vulnerabilities. Since the 1980\u27s, security researchers have uncovered software defects by fuzz testing an application. In fuzz testing\u27s infancy, randomly generated data could discover multiple defects quickly. However, as software matures and software development companies integrate secure development practices into their development life cycles, fuzzers must apply more sophisticated techniques in order to retain their ability to uncover defects. Fuzz testing must evolve, and fuzz testing practitioners must devise new algorithms to exercise an application in unexpected ways. This dissertation\u27s objective is to create a proof-of-concept genetic algorithm fuzz testing framework to exercise an application\u27s file format parsing routines. The framework includes multiple genetic algorithm variations, provides a configuration scheme, and correlates data gathered from static and dynamic analysis to guide negative test case evolution. Experiments conducted for this dissertation illustrate the effectiveness of a genetic algorithm fuzzer in comparison to standard fuzz testing tools. The experiments showcase a genetic algorithm fuzzer\u27s ability to discover multiple unique defects within a limited number of negative test cases. These experiments also highlight an application\u27s increased execution time when fuzzing with a genetic algorithm. To combat increased execution time, a distributed architecture is implemented and additional experiments demonstrate a decrease in execution time comparable to standard fuzz testing tools. A final set of experiments provide guidance on fitness function selection with a CHC genetic algorithm fuzzer with different population size configurations

    ASAP: Automatic semantics-aware analysis of network payloads

    Get PDF
    Automatic inspection of network payloads is a prerequisite for effective analysis of network communication. Security research has largely focused on network analysis using protocol specifications, for example for intrusion detection, fuzz testing and forensic analysis. The specification of a protocol alone, however, is often not sufficient for accurate analysis of communication, as it fails to reflect individual semantics of network applications. We propose a framework for semantics-aware analysis of network payloads which automaticylly extracts semantic components from recorded network traffic. Our method proceeds by mapping network payloads to a vector space and identifying semantic templates corresponding to base directions in the vector space. We demonstrate the efficacy of semantics-aware analysis in different security applications: automatic discovery of patterns in honeypot data, analysis of malware communication and network intrusion detection

    The Oracle Problem in Software Testing: A Survey

    Get PDF
    Testing involves examining the behaviour of a system in order to discover potential faults. Given an input for a system, the challenge of distinguishing the corresponding desired, correct behaviour from potentially incorrect behavior is called the “test oracle problem”. Test oracle automation is important to remove a current bottleneck that inhibits greater overall test automation. Without test oracle automation, the human has to determine whether observed behaviour is correct. The literature on test oracles has introduced techniques for oracle automation, including modelling, specifications, contract-driven development and metamorphic testing. When none of these is completely adequate, the final source of test oracle information remains the human, who may be aware of informal specifications, expectations, norms and domain specific information that provide informal oracle guidance. All forms of test oracles, even the humble human, involve challenges of reducing cost and increasing benefit. This paper provides a comprehensive survey of current approaches to the test oracle problem and an analysis of trends in this important area of software testing research and practice

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    LLM for SoC Security: A Paradigm Shift

    Full text link
    As the ubiquity and complexity of system-on-chip (SoC) designs increase across electronic devices, the task of incorporating security into an SoC design flow poses significant challenges. Existing security solutions are inadequate to provide effective verification of modern SoC designs due to their limitations in scalability, comprehensiveness, and adaptability. On the other hand, Large Language Models (LLMs) are celebrated for their remarkable success in natural language understanding, advanced reasoning, and program synthesis tasks. Recognizing an opportunity, our research delves into leveraging the emergent capabilities of Generative Pre-trained Transformers (GPTs) to address the existing gaps in SoC security, aiming for a more efficient, scalable, and adaptable methodology. By integrating LLMs into the SoC security verification paradigm, we open a new frontier of possibilities and challenges to ensure the security of increasingly complex SoCs. This paper offers an in-depth analysis of existing works, showcases practical case studies, demonstrates comprehensive experiments, and provides useful promoting guidelines. We also present the achievements, prospects, and challenges of employing LLM in different SoC security verification tasks.Comment: 42 page

    The Integration of Machine Learning into Automated Test Generation: A Systematic Mapping Study

    Get PDF
    Context: Machine learning (ML) may enable effective automated test generation. Objective: We characterize emerging research, examining testing practices, researcher goals, ML techniques applied, evaluation, and challenges. Methods: We perform a systematic mapping on a sample of 102 publications. Results: ML generates input for system, GUI, unit, performance, and combinatorial testing or improves the performance of existing generation methods. ML is also used to generate test verdicts, property-based, and expected output oracles. Supervised learning - often based on neural networks - and reinforcement learning - often based on Q-learning - are common, and some publications also employ unsupervised or semi-supervised learning. (Semi-/Un-)Supervised approaches are evaluated using both traditional testing metrics and ML-related metrics (e.g., accuracy), while reinforcement learning is often evaluated using testing metrics tied to the reward function. Conclusion: Work-to-date shows great promise, but there are open challenges regarding training data, retraining, scalability, evaluation complexity, ML algorithms employed - and how they are applied - benchmarks, and replicability. Our findings can serve as a roadmap and inspiration for researchers in this field.Comment: Under submission to Software Testing, Verification, and Reliability journal. (arXiv admin note: text overlap with arXiv:2107.00906 - This is an earlier study that this study extends

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    • …
    corecore