4,689 research outputs found

    On the Synergies between Machine Learning and Binocular Stereo for Depth Estimation from Images: a Survey

    Full text link
    Stereo matching is one of the longest-standing problems in computer vision with close to 40 years of studies and research. Throughout the years the paradigm has shifted from local, pixel-level decision to various forms of discrete and continuous optimization to data-driven, learning-based methods. Recently, the rise of machine learning and the rapid proliferation of deep learning enhanced stereo matching with new exciting trends and applications unthinkable until a few years ago. Interestingly, the relationship between these two worlds is two-way. While machine, and especially deep, learning advanced the state-of-the-art in stereo matching, stereo itself enabled new ground-breaking methodologies such as self-supervised monocular depth estimation based on deep networks. In this paper, we review recent research in the field of learning-based depth estimation from single and binocular images highlighting the synergies, the successes achieved so far and the open challenges the community is going to face in the immediate future.Comment: Accepted to TPAMI. Paper version of our CVPR 2019 tutorial: "Learning-based depth estimation from stereo and monocular images: successes, limitations and future challenges" (https://sites.google.com/view/cvpr-2019-depth-from-image/home

    Error Correction for Dense Semantic Image Labeling

    Full text link
    Pixelwise semantic image labeling is an important, yet challenging, task with many applications. Typical approaches to tackle this problem involve either the training of deep networks on vast amounts of images to directly infer the labels or the use of probabilistic graphical models to jointly model the dependencies of the input (i.e. images) and output (i.e. labels). Yet, the former approaches do not capture the structure of the output labels, which is crucial for the performance of dense labeling, and the latter rely on carefully hand-designed priors that require costly parameter tuning via optimization techniques, which in turn leads to long inference times. To alleviate these restrictions, we explore how to arrive at dense semantic pixel labels given both the input image and an initial estimate of the output labels. We propose a parallel architecture that: 1) exploits the context information through a LabelPropagation network to propagate correct labels from nearby pixels to improve the object boundaries, 2) uses a LabelReplacement network to directly replace possibly erroneous, initial labels with new ones, and 3) combines the different intermediate results via a Fusion network to obtain the final per-pixel label. We experimentally validate our approach on two different datasets for the semantic segmentation and face parsing tasks respectively, where we show improvements over the state-of-the-art. We also provide both a quantitative and qualitative analysis of the generated results
    • …
    corecore