62 research outputs found

    Estimating snow cover from publicly available images

    Get PDF
    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to such sources, addressing the specific challenges posed by each of them, e.g., identifying the mountain peaks, filtering out images taken in bad weather conditions, handling varying illumination conditions. The final outcome is summarized in a snow cover index, which indicates for a specific mountain and day of the year, the fraction of visible area covered by snow, possibly at different elevations. We created a manually labelled dataset to assess the accuracy of the image snow covered area estimation, achieving 90.0% precision at 91.1% recall. In addition, we show that seasonal trends related to air temperature are captured by the snow cover index.Comment: submitted to IEEE Transactions on Multimedi

    Image Matching across Wide Baselines: From Paper to Practice

    Full text link
    We introduce a comprehensive benchmark for local features and robust estimation algorithms, focusing on the downstream task -- the accuracy of the reconstructed camera pose -- as our primary metric. Our pipeline's modular structure allows easy integration, configuration, and combination of different methods and heuristics. This is demonstrated by embedding dozens of popular algorithms and evaluating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings, classical solutions may still outperform the perceived state of the art. Besides establishing the actual state of the art, the conducted experiments reveal unexpected properties of Structure from Motion (SfM) pipelines that can help improve their performance, for both algorithmic and learned methods. Data and code are online https://github.com/vcg-uvic/image-matching-benchmark, providing an easy-to-use and flexible framework for the benchmarking of local features and robust estimation methods, both alongside and against top-performing methods. This work provides a basis for the Image Matching Challenge https://vision.uvic.ca/image-matching-challenge.Comment: Added: KeyNet-SOSNet, AffNet-HardNet, TFeat, MKD from korni

    Leveraging Overhead Imagery for Localization, Mapping, and Understanding

    Get PDF
    Ground-level and overhead images provide complementary viewpoints of the world. This thesis proposes methods which leverage dense overhead imagery, in addition to sparsely distributed ground-level imagery, to advance traditional computer vision problems, such as ground-level image localization and fine-grained urban mapping. Our work focuses on three primary research areas: learning a joint feature representation between ground-level and overhead imagery to enable direct comparison for the task of image geolocalization, incorporating unlabeled overhead images by inferring labels from nearby ground-level images to improve image-driven mapping, and fusing ground-level imagery with overhead imagery to enhance understanding. The ultimate contribution of this thesis is a general framework for estimating geospatial functions, such as land cover or land use, which integrates visual evidence from both ground-level and overhead image viewpoints

    Análise de propriedades intrínsecas e extrínsecas de amostras biométricas para detecção de ataques de apresentação

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os recentes avanços nas áreas de pesquisa em biometria, forense e segurança da informação trouxeram importantes melhorias na eficácia dos sistemas de reconhecimento biométricos. No entanto, um desafio ainda em aberto é a vulnerabilidade de tais sistemas contra ataques de apresentação, nos quais os usuários impostores criam amostras sintéticas, a partir das informações biométricas originais de um usuário legítimo, e as apresentam ao sensor de aquisição procurando se autenticar como um usuário válido. Dependendo da modalidade biométrica, os tipos de ataque variam de acordo com o tipo de material usado para construir as amostras sintéticas. Por exemplo, em biometria facial, uma tentativa de ataque é caracterizada quando um usuário impostor apresenta ao sensor de aquisição uma fotografia, um vídeo digital ou uma máscara 3D com as informações faciais de um usuário-alvo. Em sistemas de biometria baseados em íris, os ataques de apresentação podem ser realizados com fotografias impressas ou com lentes de contato contendo os padrões de íris de um usuário-alvo ou mesmo padrões de textura sintéticas. Nos sistemas biométricos de impressão digital, os usuários impostores podem enganar o sensor biométrico usando réplicas dos padrões de impressão digital construídas com materiais sintéticos, como látex, massa de modelar, silicone, entre outros. Esta pesquisa teve como objetivo o desenvolvimento de soluções para detecção de ataques de apresentação considerando os sistemas biométricos faciais, de íris e de impressão digital. As linhas de investigação apresentadas nesta tese incluem o desenvolvimento de representações baseadas nas informações espaciais, temporais e espectrais da assinatura de ruído; em propriedades intrínsecas das amostras biométricas (e.g., mapas de albedo, de reflectância e de profundidade) e em técnicas de aprendizagem supervisionada de características. Os principais resultados e contribuições apresentadas nesta tese incluem: a criação de um grande conjunto de dados publicamente disponível contendo aproximadamente 17K videos de simulações de ataques de apresentações e de acessos genuínos em um sistema biométrico facial, os quais foram coletados com a autorização do Comitê de Ética em Pesquisa da Unicamp; o desenvolvimento de novas abordagens para modelagem e análise de propriedades extrínsecas das amostras biométricas relacionadas aos artefatos que são adicionados durante a fabricação das amostras sintéticas e sua captura pelo sensor de aquisição, cujos resultados de desempenho foram superiores a diversos métodos propostos na literature que se utilizam de métodos tradicionais de análise de images (e.g., análise de textura); a investigação de uma abordagem baseada na análise de propriedades intrínsecas das faces, estimadas a partir da informação de sombras presentes em sua superfície; e, por fim, a investigação de diferentes abordagens baseadas em redes neurais convolucionais para o aprendizado automático de características relacionadas ao nosso problema, cujos resultados foram superiores ou competitivos aos métodos considerados estado da arte para as diferentes modalidades biométricas consideradas nesta tese. A pesquisa também considerou o projeto de eficientes redes neurais com arquiteturas rasas capazes de aprender características relacionadas ao nosso problema a partir de pequenos conjuntos de dados disponíveis para o desenvolvimento e a avaliação de soluções para a detecção de ataques de apresentaçãoAbstract: Recent advances in biometrics, information forensics, and security have improved the recognition effectiveness of biometric systems. However, an ever-growing challenge is the vulnerability of such systems against presentation attacks, in which impostor users create synthetic samples from the original biometric information of a legitimate user and show them to the acquisition sensor seeking to authenticate themselves as legitimate users. Depending on the trait used by the biometric authentication, the attack types vary with the type of material used to build the synthetic samples. For instance, in facial biometric systems, an attempted attack is characterized by the type of material the impostor uses such as a photograph, a digital video, or a 3D mask with the facial information of a target user. In iris-based biometrics, presentation attacks can be accomplished with printout photographs or with contact lenses containing the iris patterns of a target user or even synthetic texture patterns. In fingerprint biometric systems, impostor users can deceive the authentication process using replicas of the fingerprint patterns built with synthetic materials such as latex, play-doh, silicone, among others. This research aimed at developing presentation attack detection (PAD) solutions whose objective is to detect attempted attacks considering different attack types, in each modality. The lines of investigation presented in this thesis aimed at devising and developing representations based on spatial, temporal and spectral information from noise signature, intrinsic properties of the biometric data (e.g., albedo, reflectance, and depth maps), and supervised feature learning techniques, taking into account different testing scenarios including cross-sensor, intra-, and inter-dataset scenarios. The main findings and contributions presented in this thesis include: the creation of a large and publicly available benchmark containing 17K videos of presentation attacks and bona-fide presentations simulations in a facial biometric system, whose collect were formally authorized by the Research Ethics Committee at Unicamp; the development of novel approaches to modeling and analysis of extrinsic properties of biometric samples related to artifacts added during the manufacturing of the synthetic samples and their capture by the acquisition sensor, whose results were superior to several approaches published in the literature that use traditional methods for image analysis (e.g., texture-based analysis); the investigation of an approach based on the analysis of intrinsic properties of faces, estimated from the information of shadows present on their surface; and the investigation of different approaches to automatically learning representations related to our problem, whose results were superior or competitive to state-of-the-art methods for the biometric modalities considered in this thesis. We also considered in this research the design of efficient neural networks with shallow architectures capable of learning characteristics related to our problem from small sets of data available to develop and evaluate PAD solutionsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140069/2016-0 CNPq, 142110/2017-5CAPESCNP

    Long-Term Simultaneous Localization and Mapping in Dynamic Environments.

    Full text link
    One of the core competencies required for autonomous mobile robotics is the ability to use sensors to perceive the environment. From this noisy sensor data, the robot must build a representation of the environment and localize itself within this representation. This process, known as simultaneous localization and mapping (SLAM), is a prerequisite for almost all higher-level autonomous behavior in mobile robotics. By associating the robot's sensory observations as it moves through the environment, and by observing the robot's ego-motion through proprioceptive sensors, constraints are placed on the trajectory of the robot and the configuration of the environment. This results in a probabilistic optimization problem to find the most likely robot trajectory and environment configuration given all of the robot's previous sensory experience. SLAM has been well studied under the assumptions that the robot operates for a relatively short time period and that the environment is essentially static during operation. However, performing SLAM over long time periods while modeling the dynamic changes in the environment remains a challenge. The goal of this thesis is to extend the capabilities of SLAM to enable long-term autonomous operation in dynamic environments. The contribution of this thesis has three main components: First, we propose a framework for controlling the computational complexity of the SLAM optimization problem so that it does not grow unbounded with exploration time. Second, we present a method to learn visual feature descriptors that are more robust to changes in lighting, allowing for improved data association in dynamic environments. Finally, we use the proposed tools in SLAM systems that explicitly models the dynamics of the environment in the map by representing each location as a set of example views that capture how the location changes with time. We experimentally demonstrate that the proposed methods enable long-term SLAM in dynamic environments using a large, real-world vision and LIDAR dataset collected over the course of more than a year. This dataset captures a wide variety of dynamics: from short-term scene changes including moving people, cars, changing lighting, and weather conditions; to long-term dynamics including seasonal conditions and structural changes caused by construction.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111538/1/carlevar_1.pd
    corecore