5 research outputs found

    Emotion Recognition with Spatial Attention and Temporal Softmax Pooling

    Full text link
    Video-based emotion recognition is a challenging task because it requires to distinguish the small deformations of the human face that represent emotions, while being invariant to stronger visual differences due to different identities. State-of-the-art methods normally use complex deep learning models such as recurrent neural networks (RNNs, LSTMs, GRUs), convolutional neural networks (CNNs, C3D, residual networks) and their combination. In this paper, we propose a simpler approach that combines a CNN pre-trained on a public dataset of facial images with (1) a spatial attention mechanism, to localize the most important regions of the face for a given emotion, and (2) temporal softmax pooling, to select the most important frames of the given video. Results on the challenging EmotiW dataset show that this approach can achieve higher accuracy than more complex approaches.Comment: 9 pages; 2 figures; 2 tables; Best paper award at ICIAR 201

    An Occam’s Razor View on Learning Audiovisual Emotion Recognition with Small Training Sets

    Get PDF
    International audienceThis paper presents a light-weight and accurate deep neural model for audiovisual emotion recognition. To design this model, the authors followed a philosophy of simplicity, drastically limiting the number of parameters to learn from the target datasets, always choosing the simplest earning methods: i) transfer learning and low-dimensional space embedding allows to reduce the dimensionality of the representations. ii) The isual temporal information is handled by a simple score-per-frame selection process, averaged across time. iii) A simple frame selection echanism is also proposed to weight the images of a sequence. iv) The fusion of the different modalities is performed at prediction level (late usion). We also highlight the inherent challenges of the AFEW dataset and the difficulty of model selection with as few as 383 validation equences. The proposed real-time emotion classifier achieved a state-of-the-art accuracy of 60.64 % on the test set of AFEW, and ranked 4th at he Emotion in the Wild 2018 challenge

    Leveraging Large Face Recognition Data for Emotion Classification

    No full text
    In this paper we describe a solution to our entry for the emotion recognition challenge EmotiW 2017. We propose an ensemble of several models, which capture spatial and audio features from videos. Spatial features are captured by convolutional neural networks, pretrained on large face recognition datasets. We show that usage of strong industry-level face recognition networks increases the accuracy of emotion recognition. Using our ensemble we improve on the previous year's best result on the test set by about 1%, achieving a 60.03% classification accuracy without any use of visual temporal information, showing a top-2 result in this challenge
    corecore