2,050 research outputs found

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity Analysis

    Full text link
    Traffic prediction is one of the key elements to ensure the safety and convenience of citizens. Existing traffic prediction models primarily focus on deep learning architectures to capture spatial and temporal correlation. They often overlook the underlying nature of traffic. Specifically, the sensor networks in most traffic datasets do not accurately represent the actual road network exploited by vehicles, failing to provide insights into the traffic patterns in urban activities. To overcome these limitations, we propose an improved traffic prediction method based on graph convolution deep learning algorithms. We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns. Despite making minimal modifications to the conventional graph convolutional recurrent networks and graph convolutional transformer architectures, our approach achieves state-of-the-art performance without introducing excessive computational overhead.Comment: CIKM 202

    Knowledge Distillation on Spatial-Temporal Graph Convolutional Network for Traffic Prediction

    Full text link
    Efficient real-time traffic prediction is crucial for reducing transportation time. To predict traffic conditions, we employ a spatio-temporal graph neural network (ST-GNN) to model our real-time traffic data as temporal graphs. Despite its capabilities, it often encounters challenges in delivering efficient real-time predictions for real-world traffic data. Recognizing the significance of timely prediction due to the dynamic nature of real-time data, we employ knowledge distillation (KD) as a solution to enhance the execution time of ST-GNNs for traffic prediction. In this paper, We introduce a cost function designed to train a network with fewer parameters (the student) using distilled data from a complex network (the teacher) while maintaining its accuracy close to that of the teacher. We use knowledge distillation, incorporating spatial-temporal correlations from the teacher network to enable the student to learn the complex patterns perceived by the teacher. However, a challenge arises in determining the student network architecture rather than considering it inadvertently. To address this challenge, we propose an algorithm that utilizes the cost function to calculate pruning scores, addressing small network architecture search issues, and jointly fine-tunes the network resulting from each pruning stage using KD. Ultimately, we evaluate our proposed ideas on two real-world datasets, PeMSD7 and PeMSD8. The results indicate that our method can maintain the student's accuracy close to that of the teacher, even with the retention of only 3%3\% of network parameters

    Interaction-Aware Personalized Vehicle Trajectory Prediction Using Temporal Graph Neural Networks

    Full text link
    Accurate prediction of vehicle trajectories is vital for advanced driver assistance systems and autonomous vehicles. Existing methods mainly rely on generic trajectory predictions derived from large datasets, overlooking the personalized driving patterns of individual drivers. To address this gap, we propose an approach for interaction-aware personalized vehicle trajectory prediction that incorporates temporal graph neural networks. Our method utilizes Graph Convolution Networks (GCN) and Long Short-Term Memory (LSTM) to model the spatio-temporal interactions between target vehicles and their surrounding traffic. To personalize the predictions, we establish a pipeline that leverages transfer learning: the model is initially pre-trained on a large-scale trajectory dataset and then fine-tuned for each driver using their specific driving data. We employ human-in-the-loop simulation to collect personalized naturalistic driving trajectories and corresponding surrounding vehicle trajectories. Experimental results demonstrate the superior performance of our personalized GCN-LSTM model, particularly for longer prediction horizons, compared to its generic counterpart. Moreover, the personalized model outperforms individual models created without pre-training, emphasizing the significance of pre-training on a large dataset to avoid overfitting. By incorporating personalization, our approach enhances trajectory prediction accuracy

    Long-Term Traffic Prediction Based on Stacked GCN Model

    Get PDF
    With the recent surge in road traffic within major cities, the need for both short and long-term traffic flow forecasting has become paramount for city authorities. Previous research efforts have predominantly focused on short-term traffic flow estimations for specific road segments and paths. However, applications of paramount importance, such as traffic management and schedule routing planning, demand a deep understanding of long-term traffic flow predictions. However, due to the intricate interplay of underlying factors, there exists a scarcity of studies dedicated to long-term traffic prediction. Previous research has also highlighted the challenge of lower accuracy in long-term predictions owing to error propagation within the model. This model effectively combines Graph Convolutional Network (GCN) capacity to extract spatial characteristics from the road network with the stacked GCN aptitude for capturing temporal context. Our developed model is subsequently employed for traffic flow forecasting within urban road networks. We rigorously compare our method against baseline techniques using two real-world datasets. Our approach significantly reduces prediction errors by 40% to 60% compared to other methods. The experimental results underscore our model's ability to uncover spatiotemporal dependencies within traffic data and its superior predictive performance over baseline models using real-world traffic datasets

    Graph Neural Network for spatiotemporal data: methods and applications

    Full text link
    In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed

    Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction

    Full text link
    Traffic forecasting is an important issue in intelligent traffic systems (ITS). Graph neural networks (GNNs) are effective deep learning models to capture the complex spatio-temporal dependency of traffic data, achieving ideal prediction performance. In this paper, we propose attention-based graph neural ODE (ASTGODE) that explicitly learns the dynamics of the traffic system, which makes the prediction of our machine learning model more explainable. Our model aggregates traffic patterns of different periods and has satisfactory performance on two real-world traffic data sets. The results show that our model achieves the highest accuracy of the root mean square error metric among all the existing GNN models in our experiments
    • …
    corecore