1,366 research outputs found

    Bayesian Discovery of Multiple Bayesian Networks via Transfer Learning

    Full text link
    Bayesian network structure learning algorithms with limited data are being used in domains such as systems biology and neuroscience to gain insight into the underlying processes that produce observed data. Learning reliable networks from limited data is difficult, therefore transfer learning can improve the robustness of learned networks by leveraging data from related tasks. Existing transfer learning algorithms for Bayesian network structure learning give a single maximum a posteriori estimate of network models. Yet, many other models may be equally likely, and so a more informative result is provided by Bayesian structure discovery. Bayesian structure discovery algorithms estimate posterior probabilities of structural features, such as edges. We present transfer learning for Bayesian structure discovery which allows us to explore the shared and unique structural features among related tasks. Efficient computation requires that our transfer learning objective factors into local calculations, which we prove is given by a broad class of transfer biases. Theoretically, we show the efficiency of our approach. Empirically, we show that compared to single task learning, transfer learning is better able to positively identify true edges. We apply the method to whole-brain neuroimaging data.Comment: 10 page

    Interactive Exploration of Multitask Dependency Networks

    Get PDF
    Scientists increasingly depend on machine learning algorithms to discover patterns in complex data. Two examples addressed in this dissertation are identifying how information sharing among regions of the brain develops due to learning; and, learning dependency networks of blood proteins associated with cancer. Dependency networks, or graphical models, are learned from the observed data in order to make comparisons between the sub-populations of the dataset. Rarely is there sufficient data to infer robust individual networks for each sub-population. The multiple networks must be considered simultaneously; exploding the hypothesis space of the learning problem. Exploring this complex solution space requires input from the domain scientist to refine the objective function. This dissertation introduces a framework to incorporate domain knowledge in transfer learning to facilitate the exploration of solutions. The framework is a generalization of existing algorithms for multiple network structure identification. Solutions produced with human input narrow down the variance of solutions to those that answer questions of interest to domain scientists. Patterns, such as identifying differences between networks, are learned with higher confidence using transfer learning than through the standard method of bootstrapping. Transfer learning may be the ideal method for making comparisons among dependency networks, whether looking for similarities or differences. Domain knowledge input and visualization of solutions are combined in an interactive tool that enables domain scientists to explore the space of solutions efficiently

    Transfer Learning using Computational Intelligence: A Survey

    Get PDF
    Abstract Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting of different data patterns in the current domain. To improve the performance of existing transfer learning methods and handle the knowledge transfer process in real-world systems, ..
    • …
    corecore