
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

7-1-2013

Interactive Exploration of Multitask Dependency
Networks
Diane Oyen

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Oyen, Diane. "Interactive Exploration of Multitask Dependency Networks." (2013). https://digitalrepository.unm.edu/cs_etds/29

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/29?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Diane Oyen

Computer Science

George Luger

Terran Lane

Eric Eaton

Vincent Clark

Lance Williams

Interactive Exploration of Multitask
Dependency Networks

by

Diane Oyen

B.S., Electrical and Computer Engineering,

Carnegie Mellon University, 1998

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

May, 2013

iii

c�2013, Diane Oyen

iv

Dedication

To

my cousin, Carla Modderno

for teaching me to dance in the rain.

And also to

my husband, Troy Lovata

for all of his support along the way.

v

Acknowledgments
Many people contributed ideas, support and encouragement throughout the re-

search that culminated in this dissertation. First and foremost, I wish to acknowledge
the support and contributions of all members of my dissertation committee. As my
advisor throughout my time as a doctoral student, Terran Lane shaped much of the
work and contributed countless ideas. George Luger encouraged me to pursue the
PhD from the first time we met and provided support and guidance ever since. Eric
Eaton has been the driving force behind the research in the direction of active trans-
fer learning through many brainstorming sessions. I am indebted to Vince Clark for
collecting data worth analyzing. Thanks to Lance Williams not only for stepping in
at the last minute, but also for many interesting conversations.

I would also like to acknowledge my collaborator and mentor Alexandru Niculescu-
Mizil at NEC Laboratories. This dissertation would not be complete without his
suggestions for research directions, even if those directions outside of the typical
machine learning domain. Thanks also for sharing the protein data and thanks to the
biologists at SomaLogic for being so enthusiastic about our results.

There are a number of researchers that I worked with while a student, whose
research goals have influenced my own goal of making machine learning practical
for domain experts. Thanks to the Mind Research Network, and in particular Vince
Calhoun, for providing challenging problems to be solved. Thanks to Frank Gilfeather
for introducing me to a much broader view of national security research than I knew
existed, especially through travel to Kazakhstan and Egypt. Thanks to Robin Ohls
for giving me a chance to save babies with machine learning. While these experiences
may not be directly reflected in this dissertation, they will shape my future career
choices and research directions.

The machine learning research group of UNM have all helped with this research
through brainstorming, criticism and commiseration. In particular, I would like to
thank Vamsi Potluru, Sergey Plis, Sushmita Roy, John Burge, Eva Besada-Portas,
Xiaoran Yan, Ben Yackley, Thanaphon Tangchoopong, and Blake Anderson.

Of course, no dissertation gets written without the encouragement and help from
friends and family. Thanks to all who provided personal support, and even brought
me food, when I was discouraged, frustrated or just plain busy with deadlines.

This dissertation was supported financially by various funding agencies throughout
my time as a graduate student. I would like to acknowledge the financial support from
NSF, NIMH, DARPA, DTRA, and ONR. Additionally, NEC Laboratories provided
a paid internship that allowed me to pursue my research.

vi

Interactive Exploration of Multitask
Dependency Networks

by

Diane Oyen

B.S., Electrical and Computer Engineering,

Carnegie Mellon University, 1998

Ph.D., Computer Science, University of New Mexico, 2013

Abstract

Scientists increasingly depend on machine learning algorithms to discover patterns

in complex data. Two examples addressed in this dissertation are identifying how

information sharing among regions of the brain develops due to learning; and, learning

dependency networks of blood proteins associated with cancer. Dependency networks,

or graphical models, are learned from the observed data in order to make comparisons

between the sub-populations of the dataset. Rarely is there su�cient data to infer

robust individual networks for each sub-population. The multiple networks must be

considered simultaneously; exploding the hypothesis space of the learning problem.

Exploring this complex solution space requires input from the domain scientist to

refine the objective function.

This dissertation introduces a framework to incorporate domain knowledge in

transfer learning to facilitate the exploration of solutions. The framework is a gen-

eralization of existing algorithms for multiple network structure identification. Solu-

tions produced with human input narrow down the variance of solutions to those that

answer questions of interest to domain scientists. Patterns, such as identifying di↵er-

ences between networks, are learned with higher confidence using transfer learning

than through the standard method of bootstrapping. Transfer learning may be the

vii

ideal method for making comparisons among dependency networks, whether looking

for similarities or di↵erences. Domain knowledge input and visualization of solutions

are combined in an interactive tool that enables domain scientists to explore the space

of solutions e�ciently.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Goals . 7

1.2 Impact . 8

1.3 Contributions . 9

1.4 Organization of this Dissertation . 10

2 Background and Context 12

2.1 Structure Learning of Graphical Models 12

2.1.1 Bayesian Networks . 13

2.1.2 Graphical Lasso . 14

2.2 Comparing Learned Graph Structures 15

2.2.1 Applications . 16

2.2.2 Open Challenges . 17

2.3 Transfer and Multitask Learning . 19

2.3.1 Existing methods . 19

2.3.2 Task-relatedness knowledge 20

2.3.3 Transfer in unsupervised learning 21

2.4 Interactive Machine Learning . 22

Contents ix

2.4.1 Active Learning . 23

2.4.2 Interactive Supervised Learning 23

2.4.3 Interactive Unsupervised Learning 24

2.4.4 Interactive Parameter Search 25

3 Prior Domain Knowledge about Task-Relatedness 27

3.1 Motivation . 27

3.2 Related Work . 30

3.3 Preliminaries: Multitask Structure Learning 31

3.4 Task-Relatedness Aware Multitask Learning 32

3.4.1 Multitask Learning of Bayesian Networks 34

3.4.2 Special Cases . 35

3.5 Experiments on Synthetic Data . 36

3.5.1 NetSim Data . 36

3.5.2 Overall Results on NetSim Data 39

3.5.3 Detailed NetSim Results . 40

3.6 Networks Learned from fMRI . 48

3.6.1 Age-Groups as Tasks . 48

3.6.2 Stages of Schizophrenia as Tasks 51

3.6.3 Tasks Defined by Medication Type 52

3.7 Discussion . 53

3.8 Conclusion . 55

4 Bayesian Discovery of Multiple Bayesian Networks 56

4.1 Motivation . 56

4.2 Related Work . 59

4.3 Preliminaries . 60

4.3.1 Structural Feature Discovery 60

4.3.2 Multitask Bayesian Networks 62

4.4 Multitask Feature Discovery . 64

Contents x

4.4.1 Problem Formulation . 64

4.4.2 Computational Complexity . 65

4.4.3 Transfer via Structure Bias . 66

4.4.4 Bayesian Model Averaging . 68

4.5 Experiments . 69

4.5.1 Benchmark Data . 71

4.5.2 Benchmark Results . 72

4.6 Application to Neuroimaging . 77

4.6.1 Small Samples . 78

4.7 Discussion . 79

4.8 Conclusions . 80

5 Learning Di↵erences between Network Structures via Transfer 81

5.1 Motivation . 81

5.2 Naive Approach: Learning Independently then Comparing 84

5.3 Transfer Learning for Di↵erential Networks 87

5.3.1 Gaussian Graphical Models 87

5.3.2 Transelliptical Graphical Models 88

5.3.3 Joint Graphical Models with Transfer 89

5.4 Experiments with Synthetic Data . 89

5.5 Case Studies on Real Data . 92

5.5.1 Addressing Gaussian Model Mismatch 92

5.5.2 False Discovery Rate . 93

5.5.3 Accelerated Learning fMRI Study 94

5.5.4 Ovarian Cancer . 99

5.5.5 Pancreatic Cancer . 103

5.6 Conclusion . 107

6 Interactive Exploration of Hyper-Parameters 108

6.1 Motivation . 109

Contents xi

6.2 Current Approach and Related Work 115

6.3 Updating Learned Graphs with User Feedback 116

6.3.1 Sketch of Interactive Approach 117

6.3.2 Representation of User Feedback 117

6.3.3 Local Move Toward User Desires 119

6.3.4 Computational Challenges . 119

6.4 Exploration of Multitask Bayesian Networks 120

6.4.1 Preliminaries . 120

6.4.2 E�cient Computation of Transfer Bias 122

6.4.3 Thresholding for graphs . 123

6.5 Numerical Estimation of Hyper-Parameters 125

6.5.1 Estimation of ⇤ for Multitask Bayesian Networks 126

6.6 Discussion . 127

6.6.1 Demonstration on Benchmark Networks 127

6.6.2 Case Studies . 128

6.6.3 Future Work . 129

6.7 Conclusions . 131

7 Conclusions 132

7.1 Discussion . 132

7.2 Future Work . 137

7.3 Closing Statement . 138

A Multitask Bayesian Discovery Proofs 140

A.1 Extended proof of Theorem 1 . 140

A.2 Normalization constant for structure bias 142

A.3 Integration of Bayesian model average 143

References 144

xii

List of Figures

1.1 Example of two networks learned from data of two related tasks. . . 2

1.2 Machine learning workflows. 3

1.3 Terminology used in this dissertation. 4

3.1 Example applications for learning multiple networks. 29

3.2 Task-relatedness graph. 33

3.3 Generative model of multitask network structure learning use plate

notation. 33

3.4 Ground truth of NetSim data networks for one example fold. 37

3.5 NetSim data results. 38

3.6 TRAM sensitivity curves as fit to holdout data. 41

3.7 TRAM sensitivity curves as edit distance. 42

3.8 MTL sensitivity curves as fit to holdout data. 43

3.9 MTL sensitivity curves as edit distance. 44

3.10 Network similarity on NetSim data. 45

3.11 Edit distance to ground truth for TRAM, MTL, STL, and AVG. . . 46

3.12 Likelihood on a large test set for TRAM, MTL and AVG. 47

3.13 Age groups: Task definitions. 49

3.14 Age groups: Learned similarity among networks. 49

3.15 Age groups: Likelihood of holdout data. 50

3.16 Patient type: Metric of task-relatedness. 51

3.17 Patient type: Learned similarity among networks. 52

List of Figures xiii

3.18 Drug data: Metric of task-relatedness. 53

3.19 Drug data: Increase in performance over STL 53

3.20 Drug data: Learned similarity among networks. 54

4.1 Example posterior distributions. 57

4.2 Asia network. 70

4.3 Color coding of network edges. 70

4.4 Posterior probability estimate of edges in the asia network from large

sample sets. 71

4.5 Posterior probability estimate of edges in the asia network from small

sample sets. 71

4.6 ROC curves for asia. 74

4.7 Learning curves for a modified alarm network. 75

4.8 ROC curves for alarm network. 76

4.9 fMRI data: Estimated posterior of features from small subsets of sub-

jects. 78

5.1 Confusion matrix. 84

5.2 Precision versus recall . 86

5.3 Precision versus recall of learned di↵erences, on synthetic networks. . 90

5.4 Precision versus recall of learned di↵erences, on synthetic networks. . 90

5.5 Accelerated learning fMRI study false discovery rate. 95

5.6 Di↵erential dependency networks learned from Accelerated Learning

fMRI Study. 97

5.7 Network of dependencies shared among Novice and Intermediate stages

of the Accelerated Learning study. 98

5.8 Ovarian cancer study false discovery rate. 99

5.9 Ovarian cancer di↵erence network with transfer bias. 100

5.10 Ovarian cancer di↵erence network without transfer bias. 101

5.11 Pancreatic cancer study false discovery rate. 104

List of Figures xiv

5.12 Pancreatic cancer di↵erence network with some transfer bias. 106

6.1 Example of a sub-graph learned from neuroimaging data. 110

6.2 Accelerated learning study: summary statistics for various values of

sparsity and transfer hyper-parameters. 111

6.3 Accelerated learning study: summary statistics for a fine grid of spar-

sity and transfer hyper-parameters. 112

6.4 Interactive multi-graph visualization. 114

6.5 Estimated posterior likelihoods for two tasks. 124

6.6 Graphs obtained by thresholding �1. 124

6.7 Estimated posterior likelihoods for two tasks without transfer bias. . 125

6.8 Graphs obtained by thresholding �1 with some transfer bias. 125

6.9 Modified asia networks: summary statistics about learned network

models for various values of sparsity and transfer hyper-parameters. 128

xv

List of Tables

3.1 Patient type: Likelihood of holdout data. 51

4.1 Performance increase for asia in terms of AUC. 73

4.2 Performance increase on alarm in terms of AUC. 76

5.1 Proteins associated with ovarian cancer. 102

1

Chapter 1

Introduction

Scientists in many domains, such as biology and neuroscience, increasingly rely on

machine learning algorithms to aid the discovery of patterns in complex data. Finding

patterns that suggest potential hypotheses is a problem known as knowledge discovery.

For example, neuroscientists look for pathways of information sharing in the brain,

known as functional brain networks to understand how development or mental illness

a↵ects these pathways. The underlying functional network of the brain is di�cult to

extract purely from neuroimaging data, yet it still may be possible to learn highly

likely di↵erences and similarities in these pathways under various experimental con-

texts. In another example, biologists look for how concentration correlations among

blood proteins are di↵erent in patients with cancer or heart disease. The goal is to get

a better understanding of the biological processes underlying disease, and to generate

hypotheses about protein markers that can be used for the early diagnosis of disease.

The data in these problems looks quite di↵erent, yet the same tools can be used for

both. In both cases, the goal is to discover dependencies in multivariate data, particu-

larly for making comparisons about similarities and di↵erences among various related

sets of data. Probabilistic graphical models provide a compact representation of the

joint probability distribution of variables in multivariate data (Friedman, Hastie, and

Tibshirani, 2008; Friedman, Nachman, and Peér, 1999; Heckerman, Geiger, and Chick-

ering, 1995; Koller and Friedman, 2009; Meinshausen and Bühlmann, 2006); enabling

scientists to visualize the conditional dependencies among the variables. Therefore,

Chapter 1. Introduction 2

(a) Two networks learned independently (b) Two networks learned with transfer

Figure 1.1: Networks learned from data of two related tasks. The first example shows
networks being learned independently of each other. The second example shows net-
works being learned simultaneously with transfer learning that encourages part of
the network structure to be shared among the two tasks. The amount of overlap in
shared structures is controlled by the degree of transfer bias.

the primary focus of this dissertation is on learning the structure of multiple graphical

models from related sets of data in order to make comparisons among those models

about likely dependencies. Figure 1.1a shows an example of learning two network

models from two sets of data. Conditional dependencies are shown as an edge be-

tween nodes in each network. Black edges are common to both sets of data, while

purple edges are unique to each task in this example.

Challenges in learning multiple networks are statistical, computational, and prac-

tical. The statistical challenges are primarily due to the fact that learning graphical

models, or network structure, requires large amounts of data (the number of data

samples must be at least square the number of variables) to guarantee the accuracy

of the solution (Friedman and Yakhini, 1996). Scientific data often includes hundreds

or thousands of variables, yet there is rarely su�cient data to guarantee the accuracy

of the solution. The problem of learning multiple graphical models, as addressed in

this dissertation, if approached naively, presents a computational challenge because

the solution space grows exponentially with the number of networks being learned.

Searching through these solution spaces may not be tractable. Furthermore, issues

of practical use are important. Scientists realize that their dataset is but one snap-

Chapter 1. Introduction 3

learning domain
expert

display

feedback

datadatadatadata learning solution

domain expert

display

(a) Traditional machine learning workflow

datadatadatadata learning domain
expert

display
solutionsolutionsolutionsolutionsolutions

feedback

learning

domain expert

display

(b) Proposed interactive machine learning workflow

Figure 1.2: Machine learning workflows. The top figure shows how the traditional
machine learning algorithms take data as input and output a single solution that is
presented to the domain expert or end-user. The bottom figure shows the interactive
machine learning approach given in this dissertation. The improvements are shown
in orange: multiple solutions are given rather than just one; and the domain expert
can give feedback to the learning algorithm to update the displayed solutions.

shot, possibly noisy, from a larger, unobserved population and therefore any single

solution is just one of many possible solutions. Machine learning algorithms tradition-

ally present the single most likely solution given the data and a learning objective.

Figure 1.2a shows a typical machine learning workflow, in which data is used as the

input to a machine learning algorithm. A single solution is found and displayed to

the end-user, a domain expert looking for patterns in scientific data. However, a more

complete picture of all (or many) likely solutions would be more informative to the

end-user. Figure 1.2b demonstrates the proposed interactive workflow for improving

the practicality of using machine learning algorithms. Multiple solutions would be

learned by the algorithm and displayed to the end-user. The end-user or domain ex-

pert would give feedback to the learning algorithm to explore possible solutions of

patterns in the data. Existing algorithms are of limited practical use until these issues

are addressed.

Various methods have been attempted to address the statistical, computational

Chapter 1. Introduction 4

one task

one solution

(a) A single task outlined in gray

one task

one solution

(b) A single solution outlined in gray

Figure 1.3: Terminology used in this dissertation. (a) A task is a subset of the data,
from which a task-specific network model will be learned. (b) A single solution is a
set of task-specific networks (one network per task).

and practical challenges of multiple network learning, but none fully address the

issues unique to comparative analysis of learned networks. Statistical challenges have

been addressed previously through the use of transfer and multitask learning; that is,

sharing information among related sets of data to leverage the data across multiple

sets of related data (or tasks) (Caruana, 1997; Danaher, Wang, and Witten, 2011;

Niculescu-Mizil and Caruana, 2007; Thrun, 1996). See Figure 1.1b for an example

of transfer learning of two networks and Figure 1.3a for a pictorial definition of a

task. Transfer and multitask learning methods have all been shown to improve the

accuracy of learned network models assuming that much of the network is the same

across tasks. Figure 1.1b shows two tasks learned with a transfer bias that encourages

some shared network structure. The amount of overlap in the learned structure can

be controlled through the strength of the transfer bias. With more transfer bias, a

larger portion of each learned network will be shared with the other task. Despite

the success of existing transfer learning methods, they generally have rather naive

assumptions about the degree of transfer between tasks. Therefore, this dissertation

extends transfer and multitask learning algorithms to improve the learning of multiple

network structures.

As a note on terminology, in this dissertation, we refer to transfer learning as a

Chapter 1. Introduction 5

mechanism for biasing the learned model of a target task to be similar to the structure

of one or more source tasks (Thrun, 1996). We use the term multitask learning to

define a special case of transfer learning in which all tasks are learned simultaneously

as both target and source tasks where all structures are biased to be similar to each

other (Caruana, 1997).

While transfer and multitask algorithms learn multiple networks, our goal is to

perform comparative analysis among the learned task-specific dependencies. This is

a somewhat di↵erent statistical question to answer than the typical machine learning

goal of distribution matching. Existing approaches for comparative dependency anal-

ysis generally fall into three types. The first is the naive approach of learning networks

for each related dataset independently and then making comparisons. To assess the

validity of comparisons among the learned networks, these approaches often employ

a bootstrap re-sampling or post-hoc network analysis on the learned models. When

there is limited data available to learn network structures, approaches that learn the

network independently su↵er from statistical limitations. The second approach is to

use discriminative models to look for di↵erences in dependency structures between

two related datasets. This approach has the advantage of encoding the question being

asked as the learning objective for the algorithm. Yet, this approach answers a funda-

mentally di↵erent question than what is considered in this dissertation. Discriminative

models learn dependencies that di↵erentiate one class of data from the other; how-

ever, it is rarely the case that the di↵erential dependency learned represents a direct

dependency that actually exists in the data of that class. Furthermore, learned dis-

criminative networks are di�cult to interpret, as the discriminative networks do not

represent joint probability distributions that could have generated the given dataset.

The third approach learns the multiple networks simultaneously through transfer

learning. Transfer learning assumes that some of the network structures are common

to multiple tasks, and therefore biases solutions towards those that share common

structure among tasks. When comparing learned networks, transfer learning reduces

the variance of individual task-specific solutions so that comparisons are easier to

make. This approach has been shown to perform well in terms of producing robust

Chapter 1. Introduction 6

models the match the generating distribution especially when the amount of training

data is limited. Thus, this dissertation uses transfer learning as the underlying basis

for learning comparative network structures while customizing the learning objective

toward comparison rather than distribution matching.

Learning one network model can be computationally expensive and so learning

multiple networks is even more challenging. Most transfer and multitask learning al-

gorithms have dealt with this issue by performing heuristic search for a locally optimal

single point solution (Niculescu-Mizil and Caruana, 2007; Roy, Werner-Washburne,

and Lane, 2011) or by introducing a convenient regularizer that is convex to produce

a globally optimal single point solution (Honorio and Samaras, 2010). However, it

has been shown that when learning a single network given limited data, it is better

to learn a posterior distribution over all possible solutions rather than find a sin-

gle highly-likely point solution because many other nearly score-equivalent solutions

could exist (Friedman and Koller, 2003; Koivisto, 2006). However, these algorithms

have not been extended to include a transfer bias for learning multiple networks. One

approximation algorithm has been proposed that incorporates a prior knowledge bias

(Grzegorczyk and Husmeier, 2008), but extending the exact calculation of Koivisto

and Sood (2004) would be preferable, yet it is not trivial to do this e�ciently. Thus,

computational challenges in learning multiple networks simultaneously have limited

the usefulness of existing algorithms.

The practical challenges facing domain scientists using machine learning algo-

rithms for comparative analysis of learned networks have been addressed primarily

through the creation of special-purpose algorithms. These algorithms are developed

with objective functions that are specific to particular domains. For example, in ge-

nomic research, changes in dependency structure are expected to change over the

life-cycle of algorithms. This domain knowledge can be encoded in the learning ob-

jective of a transfer learning algorithm (Husmeier, Dondelinger, and Lèbre, 2010).

The algorithm created for one domain may not be useful for another domain. Yet,

the concept of encoding domain knowledge in the objective function is applicable to

many domains. Therefore, generalizing algorithms to take this domain knowledge as

Chapter 1. Introduction 7

an input would enhance the practical use of transfer learning. This is a first step in

the human-in-the-loop workflow proposed to create a practically useful algorithm. An

algorithm that incorporates domain knowledge will bias solutions toward human de-

sires. Yet, human desires are often di�cult to encode mathematically a priori (Kapoor

et al., 2012). Instead, it is preferable to allow the domain scientist to respond to the

learned solution with feedback for the algorithm that refines the domain knowledge.

Extending existing algorithms to include this feedback loop requires a method for

translating user preferences (about the solution space) into prior knowledge (about

the appropriate bias in the learning objective). This concept of user feedback about

transfer bias in network structure learning has not been previously explored.

1.1 Goals

Until now, little research has gone into showing whether transfer learning actually

improves the comparative analysis of learned dependency networks. This is the broad

goal of this dissertation. Several practical limitations of existing transfer algorithms

have been identified and addressed. In particular, existing multitask algorithms pro-

vide only a single optimal solution (Danaher, Wang, and Witten, 2011; Niculescu-

Mizil and Caruana, 2007). One solution is defined to mean a task-specific network for

each task (see Figure 1.3b). Other solutions may be nearly as likely, and so to inter-

pret the patterns found in the data, the end-user will need a comprehensive picture

of multiple solutions to make any meaningful comparison. Another serious limitation

of multitask network structure algorithms is that they assume all pairs of tasks are

equally related and provide no mechanism for incorporating domain knowledge about

task-relatedness. We address this limitation by providing a framework for incorporat-

ing task-relatedness knowledge in any multitask network learning algorithm. Finally,

this dissertation provides a visualization tool for exploring the space of solutions

with a mechanism for the end-user to provide feedback to the learning algorithm (see

Figure 1.2b).

The overall goal of this dissertation is to provide an interactive method for learning

Chapter 1. Introduction 8

multiple network structures with the purpose of comparing dependency structures

of related scientific data sets. The goals of this dissertation are summarized in the

following questions:

• Does domain knowledge about task-relatedness lead to better comparative so-

lutions?

• Is it tractable to learn multiple solutions and display them to the end-user?

• Can feedback from the domain expert to the machine learning algorithm be

automated into an interactive process?

1.2 Impact

By achieving the goals laid out in this dissertation, we can narrow the gap between

the types of questions being asked by domain scientists and the pattern recognition

tools of machine learning that are currently available. Knowledge discovery in scien-

tific domains is a unique problem for machine learning. Other, more typical machine

learning objectives find parsimonious solutions that fit the data well, usually assuming

that the end-user is relatively unknowledgeable and cannot provide any further input.

In scientific domains, the end users are scientists that care more about understanding

the breadth of likely solutions than finding any one solution, even if it is a statistically

optimal solution. To these knowledgeable end-users, any machine learning solution is

just one possible explanation of the true generating process underlying the data set

that has been collected by the domain scientist.

Often in machine learning, the least-informative or agnostic learning objective

is the preferred objective. The assumption is that the data alone should drive the

solution. However, in scientific domains, our end-users are themselves quite knowl-

edgeable and they recognize the limitations of the particular set of data that they

have collected. This is a fundamentally di↵erent way of thinking about machine learn-

ing. For these reasons, we want to include prior knowledge, informative priors and

Chapter 1. Introduction 9

human input as a bias in the learning objective. Without such input from the domain

scientist, machine learning algorithms are of little practical use in scientific discovery.

Furthermore, once a solution has been found, scientists often are surprised by the

results. They then would like to change the parameters of the learning algorithm to

see such choices a↵ect the solution. Automating this process is critical to making

learning algorithms practical for use by practitioners. Integrating user-feedback into

the solution visualization software enables scientists to explore solutions in real-time.

Using the software tools detailed in this dissertation, our domain expert collaborators

have been able to find patterns in dependency networks that give them insight into

how functional brain networks are a↵ected by mental illness and medication, and

patterns of blood protein correlations associated with cancer.

1.3 Contributions

This dissertation makes several contributions to the field of machine learning, as

itemized here.

• Develops the task-relatedness aware multitask (TRAM) general framework for

incorporating domain knowledge about the relative relatedness of tasks in mul-

titask network structure learning formulations.

• Demonstrates that a relaxation of the standard assumption of multitask learning

that all pairs of tasks are equally related is able to learn networks that better

generalize to validation data.

• Demonstrates that domain knowledge about the relative relatedness of tasks

shapes the topology of the solution space to reflect human biases.

• Develops a multitask Bayesian network discovery algorithm for incorporating

prior knowledge about network features in estimating full posterior distributions

over multitask Bayesian networks.

Chapter 1. Introduction 10

• Demonstrates that transfer learning identifies higher confidence di↵erences be-

tween networks than existing bootstrap methods.

• Develops an interactive algorithm for updating both network solutions and

hyper-parameters using human feedback.

• Develops an interactive software tool for visualizing network solutions and pro-

viding feedback from the end-user.

• Learns comparative dependency networks from neuroimaging and blood pro-

teins that are of interest to domain scientists.

1.4 Organization of this Dissertation

This dissertation is organized as follows: Chapter 2 provides some context and back-

ground information in the form of a survey of related literature. The related work

includes machine learning algorithms for learning Bayesian networks and undirected

graphical models. Particular attention is paid to algorithms that consider multiple

networks at a time in the form of transfer and multitask learning algorithms, as well

as interactive machine learning approaches. In addition, background is provided on

neuroimaging and blood proteins.

Chapter 3 gives a general framework for incorporating human or other prior do-

main knowledge into a task-relatedness metric for multitask network structure learn-

ing. A specific application is given for learning multitask Bayesian networks from

several related datasets. This chapter demonstrates that this generalized version of

multitask network structure learning is better able to find solutions that generalize

to validation data as well as fit the preferences of the domain expert.

Chapter 4 addresses the problem of incorporating a transfer bias on graph struc-

tures in algorithms that are optimized for estimating the posterior distribution of each

individual edge in the network. These algorithms give the fullest picture possible to

the domain expert about potential dependencies that exist in the related datasets.

Chapter 1. Introduction 11

The contribution of this chapter is two-fold. First, it addresses a limitation of the

previous chapter by giving a distribution over solutions rather than a point solution.

Second, it provides an e�cient multitask Bayesian discovery algorithm that can be

used in any scenario where prior knowledge about graph structures is available.

Chapter 5 looks at the problem of identifying di↵erences between learned network

structures and demonstrates that transfer learning is an e↵ective tool for this goal.

This particular issue has typically been solved by computationally expensive boot-

strap procedures. Yet this chapter shows that transfer learning actually produces

higher confidence di↵erences than existing methods. Case studies are detailed from

neuroimaging and cancer protein data.

Chapter 6 introduces an interactive approach to exploring the space of multiple

network solutions for comparative analysis. The end-user can observe a solution and

provide feedback about whether they would prefer to see more di↵erences or more

similarities among the task-specific networks. A method for incorporating this feed-

back and an approach to update the parameters and solution based on the feedback

is presented.

Chapter 7 concludes the dissertation with a summary of major findings and im-

plications.

12

Chapter 2

Background and Context

In machine learning, probabilistic graphical models describe a compact representa-

tion of a joint probability distribution. Learning such structures from data enables

a domain scientist to visualize complex pathways of dependencies among variables,

as described in Section 2.1. The comparison of such models has been studied previ-

ously, and so we discuss relevant applications (neuroimaging and protein correlation

analysis) and open challenges in the comparison of graphical models in Section 2.2.

Our approach to learning multiple graphical models is via transfer learning. Sec-

tion 2.3 describes existing machine learning literature on transfer learning with a

focus on existing algorithms within the framework of network structure learning. Fi-

nally, Section 2.4 describes existing methods for human-in-the-loop machine learning,

also known as interactive and active learning algorithms.

2.1 Structure Learning of Graphical Models

Structure learning of graphical models refers to the problem of identifying conditional

dependencies among variables from a set of data. The underlying joint probability dis-

tribution that produced the data is assumed to be made up of only a handful of direct

dependencies. Other dependencies may exist, but are indirect. This structure is repre-

sented as the edges in a graphical model. We consider two di↵erent forms of graphical

models: discrete Bayesian networks and Gaussian graphical models, described in the

Chapter 2. Background and Context 13

rest of this section.

2.1.1 Bayesian Networks

Bayesian networks are directed acyclic graphs that give a compact representation

of the joint probability distribution among a set of variables. Directed edges encode

conditional dependencies between variables. A node in the network is independent

of all other non-descendant nodes given the value of its parent nodes. Given a set

of multivariate data, we can search for the Bayesian network that best describes the

joint probability distribution of the data (Heckerman, Geiger, and Chickering, 1995).

If the conditional dependencies (the edges or structure of the network) are known and

data fully observed, then it is straightforward to calculate the maximum-likelihood

estimates of the parameters of the distribution. However, learning the conditional

dependency structure itself is more di�cult. Learning structure is further complicated

by Markov equivalence; that is, a joint probability distribution can be described by

several di↵erent structures. Structure learning is required by applications in which we

want to discover the interactions among variables in the system, such as in functional

brain networks.

Several methods have been proposed that search over the space of Bayesian net-

works to find a network that best fits the given data (Grzegorczyk and Husmeier,

2008; Heckerman, Geiger, and Chickering, 1995; Madigan, York, and Allard, 1995).

When there are a large number of variables, it takes more data samples to charac-

terize the joint distribution over variables (Buntine, 1991). Therefore, in the case of

limited data it is more likely that spurious edges will be inferred or that true edges

will not be detected.

Network structure discovery in the face of limited data is an extensively studied

problem. With limited data, the posterior probability of even the optimal network

may be quite small; however, Friedman and Koller (2003) show that the marginal

posterior probabilities over subgraphs or structural features can be quite high given

the same data. They propose the so-called order-MCMC algorithm for estimating

Chapter 2. Background and Context 14

such posterior probabilities. Koivisto and Sood (2004) give a dynamic programming

method for calculating exact posterior probabilities of network features conditioned on

orders. Further improvements are made to make the approach more memory e�cient

(Parviainen and Koivisto, 2009) and to produce partial-order MCMC (Niinimaki,

Parviainen, and Koivisto, 2011).

2.1.2 Graphical Lasso

Gaussian graphical models (GGMs) infer a network of conditional dependencies from

multivariate data by approximating the inverse covariance matrix (Dempster, 1972;

Lauritzen and Spiegelhalter, 1988). The lasso algorithm, which employs an `1 regu-

larizer to select a sparse set of non-zero parameters to represent the data, has been

proposed to find the neighborhood of each node in the graph (Tibshirani, 1996). This

neighborhood selection is consistent with learning the full joint distribution (Mein-

shausen and Bühlmann, 2006). Various e�cient algorithms for graphical lasso, the

application of lasso to the inverse covariance selection problem, have been developed

(Banerjee, El Ghaoui, and d’Aspremont, 2008; Friedman, Hastie, and Tibshirani,

2008; Yuan and Lin, 2007). The learning problem is formally stated as follows. If X

is a p-dimensional Gaussian random variable X ⇠ N (0,⌃), then ⇥ = ⌃�1 is the

precision matrix. Entries in the precision matrix are partial correlations, i.e. ✓ij is the

correlation of variables Xi and Xj given all other variables Xm, m 6= i, j. A value

of ✓ij = 0 implies conditional independence of Xi and Xj. Therefore, the precision

matrix can be interpreted as an undirected network where nodes are the variables in

the precision matrix and edges connect variables with non-zero partial correlations.

Given the dense covariance matrix estimated from data, ⌃̂, the learning objective

for a single network is:

b⇥ = argmax
⇥�0

log det⇥ � tr(⌃̂⇥) � �k⇥k1 .

The parameter �, 0  �  1, controls the degree of sparsity. Varying this parameter

a↵ects the precision-recall tradeo↵ of identifying dependencies. Rather than selecting

an individual value for �, it is usually more informative to inspect the networks in-

Chapter 2. Background and Context 15

ferred at various values to see how edges appear/disappear along the precision-recall

curve. Many standard methods for automatically tuning �, such as cross validation,

produce networks that are denser than the true network when limited data is available

(Wasserman and Roeder, 2009). Other methods, such as stability selection, produce

sparser networks with high-precision edges, at the risk of missing some true depen-

dencies (Liu, Roeder, and Wasserman, 2010). Stability selection requires significantly

more computation due to the bootstrapping approach that requires the algorithm to

be run many times on di↵erent samples of data.

Often, the Gaussian assumption is too strong for real data. Extreme values in just a

few samples, like 1% of the data, can produce a large number of Gaussian correlations

that do not exist when those samples are not present. Transelliptical models replace

the Gaussian covariance matrix with a non-parametric correlation matrix that is

less sensitive to extreme values (Liu, Han, and Zhang, 2012). Any graphical lasso

algorithm can learn a transelliptical graphical model, simply by replacing the sample

inverse covariance matrix ⌃ with a Kendall’s tau correlation matrix. This small change

makes the learning significantly more robust to outliers and non-Gaussianity, without

any significant loss in accuracy, even when data is truly Gaussian.

2.2 Comparing Learned Graph Structures

Often, domain scientists ask questions about how dependencies change due to adap-

tation or disease. To answer such a question, data are collected for various sub-

populations in a population of interest. Then dependencies that are the same or

di↵erent among those sub-populations can be assessed. To motivate and clarify the

purpose of comparing graph structures, we describe the applications that this disser-

tation considers. Then, we outline the open challenges to answering such comparisons.

Chapter 2. Background and Context 16

2.2.1 Applications

We provide examples from two forms of biological data to motivate the comparison

of learned dependency networks.

Functional brain networks from neuroimaging data

Functional Magnetic Resonance Imaging (fMRI) measures the level of activity in

voxels of the brain over time (Sarty, 2007). Brains of di↵erent individuals are mapped

onto standard atlases of regions of interest (Lancaster et al., 2000; Tzourio-Mazoyer

et al., 2002). The resulting data are a multivariate timeseries where the variables

represent the activity levels in regions of the brain.

Due to individual physiological di↵erences, pooling data together from multiple

subjects is problematic, yet there is often not enough data to learn a di↵erent model

for each subject. Multitask learning has been used to bias models of di↵erent subjects

toward each other while still allowing for individual di↵erences (Honorio and Samaras,

2010; Varoquaux et al., 2010). The intuition is that edges that are common to many

populations will be detected correctly and those edges that are specific to a population

will only be learned when there is enough data to support them, thus reducing the

e↵ect of noise in the data.

Bayesian networks and Gaussian graphical models show how regions of the brain

interact with each other as functional networks (Smith et al., 2011). These so-called

“whole brain” network models can investigate interactions among all regions of the

brain simultaneously to discover patterns of interaction which would otherwise be

unknown to researchers, as opposed to other models of functional brain networks

which test the validity of hypotheses about the interaction of a few areas of the brain

(Friston et al., 1994; Friston, Harrison, and Penny, 2003).

Chapter 2. Background and Context 17

Plasma protein correlation networks for disease biomarkers

The concentration of thousands of plasma proteins can be measured from a single drop

of blood using Somamer technology (Gold et al., 2010). Our goal in studying plasma

protein networks is to find protein pathways that are associated with a disease, such

as cancer. If such distinguishing relationships exist, then biologists can develop blood

tests for fast, non-invasive early diagnosis of cancer, as well as gain insight into the

underlying biological process of disease. In this application, it is important to identify

di↵erences with high confidence. While many di↵erences may potentially exist, it is

very expensive to test for multiple protein concentrations, therefore we need to limit

the number of proteins to those that are most influential.

2.2.2 Open Challenges

Scarcity of data makes learning individual networks di�cult. Theoretical guarantees

on the accuracy of learned models require at least as many samples as the square

of the number of variables (Akaike, 1973; Buntine, 1991; Schwarz, 1978). We know

that we are not learning the correct network for each population, yet we still believe

that it is possible to make comparisons among various networks. The first challenge

is identifying more robust networks from limited data. Much work has been devoted

to this in recent years. We have already discussed the estimation of posterior feature

probabilities rather than entire networks (Friedman and Koller, 2003; Koivisto, 2006).

Additionally, transfer learning incorporates information from related sets of data, as

discussed in more detail in the next section (Caruana, 1997; Thrun, 1996). Transfer

learning, naively applied, provides just one type of bias that can reduce the variance of

solutions learned. The primary aim of this dissertation is to show that various forms

of bias can be incorporated into the learning objective. Bias can take the form of

preferring solutions that include specified features, numbers of features, or similarity

of features among tasks. Bias will reduce the variance of learned solutions. The trick

is to include the correct kind of bias to produce solutions that answer questions of

interest to the user. That is, it remains an open question whether the robustness of

Chapter 2. Background and Context 18

comparative analysis can be improved in light of the limitations of the robustness of

individual networks.

Machine learning solutions for comparative network analysis have been data-

driven. However, including human knowledge in the learning process is one way to

improve the quality of learned networks. Existing algorithms that incorporate human

knowledge typically rely on knowledge about the dependencies themselves (Grze-

gorczyk and Husmeier, 2008; Tong and Koller, 2001; Werhli and Husmeier, 2007).

Yet, in the applications of interest, prior information about individual dependen-

cies is not available and cannot be obtained. However, there may be other human

knowledge that can reduce the variance of solutions. In particular, in transfer learn-

ing algorithms, domain experts may be able to provide valuable information about

the transfer relationships among tasks. Furthermore, by incorporating domain knowl-

edge, the human guides the algorithm to narrow down solutions in a way that helps to

identify the highest confidence similarities and di↵erences among the networks being

learned. Existing comparative network analysis algorithms do not have a mechanism

for incorporating this knowledge.

A special interest of many domain scientists is to identify the di↵erences between

dependency networks of related tasks (Bergmann, Ihmels, and Barkai, 2004; Burge

and Lane, 2005; Roy, Werner-Washburne, and Lane, 2011; Zhang et al., 2009). Trans-

fer and multitask algorithms do not address this issue. Discriminative models do look

for di↵erences between networks that di↵erentiate the data from one class compared

with another class. Yet, discriminative models answer a fundamentally di↵erent ques-

tion because it is rarely the case the the di↵erential dependency learned represents

a conditional dependency that actually exists in the data of that class. Furthermore

discriminative networks are di�cult to interpret because they do not represent joint

probability distributions that could have generated the given dataset. They lose the

context of which dependencies do exist. Reliably identifying conditional dependencies

that exist in one network but not the other (a di↵erence), remains an open challenge

for comparative network analysis.

Chapter 2. Background and Context 19

2.3 Transfer and Multitask Learning

In the real world when encountering a novel problem, people leverage previous expe-

rience to avoid starting from scratch to learn a new task. Taking inspiration from this

aspect of human learning, a machine learning approach known as transfer learning

is concerned with applying knowledge from source tasks to improve the learning of

a target task (Thrun, 1996). Variants on transfer learning and related frameworks,

such as learning to learn, lifelong learning, multitask learning, domain adaptation,

and self-taught learning are di↵erentiated by the definition of source data and the

form of transfer to the target task (Pan and Yang, 2010).

Transfer learning is the foundation for all of the proposed methods in this dis-

sertation. Some of the methods are improvements on multitask learning, in which all

tasks are considered simultaneously. The basic assumption in multitask learning is

that there are some similarities between the various sets of data. This assumption

will be built upon for all the variations on multitask learning that we propose. When

the tasks are considered in a sequential manner rather than simultaneously, we use

the more general term transfer learning.

2.3.1 Existing methods

Multitask learning is a version of transfer learning in which all tasks are included as

both source and target tasks (Baxter, 1997; Caruana, 1997). The goal is improved

model generalization for each task as compared with learning a model for each task

independently, using the assumption that tasks are not independent of each other.

Multitask learning shares information between tasks through inductive bias. Multitask

algorithms generally learn models simultaneously for all given tasks.

Multitask (and transfer) learning encourages structures common across multiple

tasks to be learned easily while also allowing for specialization between tasks, where

the data supports specialization. Multitask learning has been successfully applied

to learn models individualized to specific users or subjects, such as text classifica-

Chapter 2. Background and Context 20

tion which tailors spam filtering to individual users (Dredze, Kulesza, and Crammer,

2010), online advertisement targeting (Chen et al., 2010), and learning localization

parameters of individual devices in a sensor network (Zheng et al., 2008). In the

analysis of neuroimaging data, we need to allow for subject variability while lever-

aging information across the pool of subjects. Jbabdi, Woolrich, and Behrens (2009)

successfully achieve this with a hierarchical Bayesian approach to clustering of brain

voxels. More closely related to our work, Honorio and Samaras (2010) treat each sub-

ject as a task while learning Gaussian graphical models of interactions among brain

regions.

2.3.2 Task-relatedness knowledge

Existing multitask and transfer learning models handle task-relatedness in one of

three ways: 1) assume all tasks are equally similar; 2) estimate the relatedness of tasks

from the training data; or 3) estimate the relatedness of tasks from some information

other than the training data. All existing multitask structure learning algorithms for

graphical models use the first method. However, in the supervised setting of multitask

learning, it has been shown that greater knowledge of task-relatedness is useful (as

described in the following paragraphs). Conversely, assuming tasks are similar when

they are not can result in negative transfer.

Rather than assuming all tasks are equally similar, the task clustering algorithm

(TC) (Thrun and O’Sullivan, 1996) explores clustering tasks by some metric of the

training data representing task-relatedness. This approach breaks the problem into

several independent multitask problems. More sophisticated models of task related-

ness have been shown to improve classifier performance. Eaton, desJardins, and Lane

(2008) learn a graph of task-relatedness from data which is then used to direct trans-

fer among tasks. Yu, Tresp, and Yu (2007) identify noisy or outlier tasks to avoid

negative transfer.

Bakker and Heskes (2003) introduced the idea of using “higher level task char-

acteristics” to improve the clustering of related tasks in classification and regression

Chapter 2. Background and Context 21

problems rather than using the data itself. Such an approach is used with classifiers

for natural language processing using meta-information from WordNet (Epshteyn and

DeJong, 2006; Miller, 1995). Another application builds multitask genomic sequence

classifiers with task-relatedness based on phylogenetic trees (Widmer et al., 2010).

We build on these findings to show that multitask structure learning algorithms can

also benefit from incorporating intelligent information about task-relatedness.

With a task-relatedness metric and learned models for some source tasks, it is

possible to predict models for a target task without any training data specific to that

task. This problem is known as zero-shot learning. Empirical results in classification

problems demonstrate the feasibility of zero-shot learning and they di↵erentiate be-

tween two frameworks (Larochelle, Erhan, and Bengio, 2008). In the terminology of

Larochelle, Erhan, and Bengio (2008), in the data-space-view, task-relatedness in-

formation is simply appended to the input data vector so that learning a model for

a new task is equivalent to generalizing over the hidden values of the missing data

of the input vector. The model-space-view on the other hand, biases the parameters

of the model toward those for similar tasks. Our work fits into the model-space-view

paradigm. An application to neuroimaging data indicates that the zero-shot approach

is feasible even with noisy, high-dimensional data (Palatucci et al., 2009). This ap-

proach is similar to using meta-data “hints” in which information from an expert

about metadata, but separate from the training data, can increase performance of

classification (Abu-Mostafa, 1995).

2.3.3 Transfer in unsupervised learning

One of the most fundamental unsupervised machine learning problems is clustering,

in which inherent groupings of data points are learned in a dataset without labels.

Transfer learning has been employed to bring some supervision into clustering using

human-clustered or human-corrected machine-generated models as source datasets to

help cluster a target dataset (Bhattacharya et al., 2009; Gu and Zhou, 2009; Zhang

and Zhang, 2010).

Chapter 2. Background and Context 22

Several multitask structure learning algorithms for graphical models have been

proposed recently. These models cover Bayesian networks (Luis, Sucar, and Morales,

2009; Niculescu-Mizil and Caruana, 2007), dynamic Bayesian networks (Husmeier,

Dondelinger, and Lèbre, 2010), Markov random fields and Gaussian graphical models

(Chiquet, Grandvalet, and Ambroise, 2011; Danaher, Wang, and Witten, 2011; Hon-

orio and Samaras, 2010). Most of the algorithms iteratively use the learned struc-

ture of other tasks as a prior on the current structure. All of these models assume

that tasks are equally related, in contrast to the proposed approach of this disserta-

tion, which incorporates task-relatedness knowledge. Many of the Gaussian graphical

model learning algorithms use a regularization framework that forces all edges to be

the same across tasks, as opposed to allowing for flexibility between learned structures

of di↵erent tasks.

Steele and Tucker (2009) transfer networks from previously published gene regu-

latory results to generate more robust network models which do not rely so heavily

on a single dataset. Similarly, Neumann et al. (2010) use meta-analysis to discover

patterns of activity in brain regions from previously published work.

2.4 Interactive Machine Learning

Various forms of human-machine dialog (or interaction or human-in-the-loop) have

been studied in machine learning for decades. In recent years, the focus has been on

machine-directed interaction, known as active learning. We provide a review of such

methods with an emphasis on active learning for unsupervised problems. We then

draw a distinction between active learning and the more general interactive learning

which need not be directed by the machine. The goals of interactive learning di↵er

greatly between various applications, and so we divide the discussion into supervised

and unsupervised domains. Most of the interactive paradigms involve gathering labels

for data instances from humans; however, the approach taken in this work is to provide

interaction with the parameters of the algorithm. Therefore, special attention is given

to interactive algorithms that address parameter search.

Chapter 2. Background and Context 23

2.4.1 Active Learning

Active learning algorithms have access to an oracle that can answer a certain class

of queries, at a cost, to give more information or data relevant to the problem. The

goal of the active learner is to select the lowest cost of queries that learns the best

model. Cohn, Ghahramani, and Jordan (1996) defines active learning as choosing a

query based on the statistically optimal method for improving the performance of the

learner. A successful active learner needs fewer labels/samples to learn good models

than if the labels/samples were drawn randomly. See Settles (2009) for a survey of

active learning paradigms.

Little work exists in active structure learning of Bayesian networks. Tong and

Koller (2001), as well as Murphy (2001), actively speed up learning through interven-

tions - forcing the value at a specified node or nodes and then drawing a sample from

the rest of the variables. Both algorithms use interventions which are not feasible in

our applications because we cannot force the activity level in a region of the brain or

the concentration of an individual plasma protein.

2.4.2 Interactive Supervised Learning

The most research in interactive machine learning falls under the broad category of

supervised learning in which the goal is to predict a classification or regression label

for each point of data. In the interactive paradigm, typically, only a few of the data

points are labelled initially. The machine learning algorithm makes predictions on

the remaining points. The user can label more points to refine the model in regions

where the machine learning algorithm makes incorrect predictions. The main di↵er-

ence between interactive learning and active learning is that active learning is driven

by the machine while interactive learning is user-driven. The user select which points

to label. Examples of such interactive applications include image segmentation (Fails

and Olsen Jr, 2003), image classification (Fogarty et al., 2008), and regression (Eaton,

Holness, and McFarlane, 2010). An interesting variation on this theme is a human-

built classifier, in which the machine only provides feedback about the current model

Chapter 2. Background and Context 24

while the human makes all decisions about which feature to split at each branch of a

decision tree (Ware et al., 2001). This work shows just how well a good visualization

system helps a human to make sense out of data even without any machine learning.

All of these supervised learning approaches expect the end-user to provide la-

bels describing the data itself. The work in this dissertation focuses on unsupervised

learning in which no such labels exist. Instead, we concentrate on providing multiple

solutions to the end-user and using interaction to navigate through those solutions.

The idea of considering multiple models in the supervised learning setting is covered

by Amershi et al. (2010) with an image classification application. While the classic

active learning approach only gives a user a method for increasing the amount of

information available to the machine, their case study of interaction shows that end-

users prefer to explore how their feedback impacts the solution and often “undo” that

feedback to revert to a previous model. This attitude toward interaction is similar

to the approach considered here. The interaction is provided primarily to allow the

end-user the ability to consider many di↵erent solutions that fit the data, rather than

treating the user as a one-way oracle that provides unchanging bits of information.

2.4.3 Interactive Unsupervised Learning

Giving the user the ability to explore the solution space is even more important in

unsupervised learning. The user may have desires about learned models that are not

expressible until the learned models are seen. Interaction in unsupervised learning,

such as clustering and topic modeling, have been studied. For unsupervised learning,

the motivation for interaction is that the user knows a good solution when he sees

it, but otherwise cannot specify a learning criterion in advance. Empirical work in

topic models justifies this assumption and shows that data-driven learning criteria do

not match human judgments of good topics (Chang et al., 2009). Several interactive

approaches to unsupervised learning recast the problem as a semi-supervised learning

problem by allowing the user to provide labels that help to guide the objective func-

tions (Cohn, Caruana, and McCallum, 2003; desJardins, MacGlashan, and Ferraioli,

Chapter 2. Background and Context 25

2007; Dubey, Bhattacharya, and Godbole, 2010). These models are quite di↵erent

than the approach taken here, where no labeling of dependencies is expected from

the user. Although, such an approach would be possible algorithmically, there is little

reason to believe that a user could provide knowledge about the existence of individ-

ual dependencies because these are precisely the unknowns to be discovered. It should

be noted that desJardins, MacGlashan, and Ferraioli (2007) provides a nice visual-

ization interface to facilitate interaction, an important component of interactive data

mining for knowledge discovery. Rather than labeling instances, another approach

has the user give feedback about the features used for clustering (Bekkerman et al.,

2007), but this approach is not applicable to graphical model learning in which the

dependencies are the features.

More related to our work, is the approach of learning multiple solutions and then

allowing a user to select among them by providing information about each of the

solutions. Dasgupta and Ng (2009) provide such an algorithm for multiple clusterings.

However this approach is not interactive. Instead, multiple clusterings are learned as a

batch and then the user selects the preferred clustering without any further interaction

with the algorithm. Dy and Brodley (2000) interactively select a subset of features

for clustering by presenting several choices to the user at each iteration. They provide

a visualization interface that allows a user to find a preferred subset of features.

2.4.4 Interactive Parameter Search

The previous examples of interactive learning involve getting information from the

user about labels on the data or preferred features. In contrast to these, our problem

is not about getting information from the user about the data itself. Rather, it is

giving the user a mechanism for exploring the various models that could be learned

from a static set of data. Most learning algorithms are dependent not only on the

data but also input parameters, referred to as algorithm parameters, to determine the

learned model. Generally, these parameters are hidden from the end-user and chosen

through a data-driven model selection procedure. The early parts of this dissertation

Chapter 2. Background and Context 26

project demonstrate that in some applications, these parameters can actually be used

to tailor the solution models to focus on particular queries from the user. Instead of

selecting a single model, the end-user varies the parameters to explore the space of

models.

Model selection is an inherently di�cult, if not impossible, problem throughout

machine learning. In graphical model structure learning, model selection concerns the

choice of the number of edges present in the model. Several methods have been pro-

posed, generally involving some form of information criterion (Akaike, 1973; Schwarz,

1978). These criteria attempt to choose the smallest model that accurately fits the

data. For a given choice of criterion, a model can be selected in a principled manner.

Yet, choosing an appropriate criterion is still a subjective matter left to a human

expert. Thus, for learning a single graphical model, no single choice of the number of

edges will be ideal in all cases. Similarly, for learning multiple related graphs, the pa-

rameter controlling the degree of transfer among models must be selected (Danaher,

Wang, and Witten, 2011; Niculescu-Mizil and Caruana, 2007). The ideal setting of

this parameter is typically determined through fit to holdout data (Efron, 1982), but

this is only the correct criterion if fit to holdout data is the user’s priority for learning

the model (Meinshausen and Bühlmann, 2006; Van Allen and Greiner, 2000).

Interactive parameter search has been studied in supervised learning domains.

Talbot et al. (2009) optimizes the ensemble weights of a collection of classifiers via

interaction. Other work allows an end-user to adjust the cost-function weights and

show that human interaction finds optimal parameter settings faster (Amershi et al.,

2011) and gives the user control over the objective function (Kapoor et al., 2012).

Graph structure learning is an unsupervised learning domain and so there may not

be an optimal parameter setting. Furthermore, allowing a user to give feedback about

the solutions is more intuitive than asking the user to adjust hyper-parameters in the

hopes that the adjustments will have the desired e↵ect on the solution. This disserta-

tion borrows ideas from interactive parameter search in these classification problems

to address the limits of model selection in learning multiple graphical models.

27

Chapter 3

Prior Domain Knowledge about

Task-Relatedness

As discussed in the Introduction, transfer learning is a promising technique for learn-

ing multiple graphical models that are related to each other. Transfer and multitask

learning algorithms for network structure identification generally assume that all pairs

of tasks are equally related. This assumption simplifies the formulation of the objective

function, but it is not always accurate. This chapter provides a framework applicable

to any multitask network structure learning algorithm for incorporating prior knowl-

edge about the relationships among pairs of tasks. Empirical results on synthetic and

real data indicate that human knowledge about task-relatedness improves the quality

of learned models and directs the solution towards those of interest to the end-user.

3.1 Motivation

Scientists use network structure learning algorithms to discover patterns of interac-

tion in multivariate data, such as functional brain networks from neuroimaging data.

For these datasets, multitask learning algorithms learn robust models even when the

number of data samples collected in a specific task are limited, but there are several

tasks that are believed to be similar (Baxter, 2000; Caruana, 1997). For example,

in group neuroimaging studies, we learn functional brain networks for several pop-

Chapter 3. Prior Domain Knowledge about Task-Relatedness 28

ulations of subjects and treat the data from each population as a task. We expect

the population-specific networks to have a lot in common but not to be identical.

Furthermore, we may be able to describe relationships among the populations. For

example in a study of functional brain networks there are populations of healthy

control subjects and schizophrenia patients on various types of medication (see Fig-

ure 3.1). In another example, we could learn protein interaction networks for various

species where species that are near each other in the evolutionary tree should have

the most similar networks (Figure 3.1).

Our goal is to learn the best set of networks that are interesting to the domain

expert. The concept of incorporating human preferences into unsupervised learning

objectives is an active research trajectory in clustering (Dasgupta and Ng, 2009)

and topic modeling (Chang et al., 2009). In these unsupervised learning problems

data-driven measures of goodness of the learned model are insu�cient and can only

be addressed by incorporating human objectives. We bring this concept to network

structure learning. The search space of Bayesian network structures is character-

ized by large basins of approximately equivalent solutions (Friedman and Koller,

2003). Multitask algorithms provide a first step toward incorporating a human bias

by selecting a set of networks that are near each other in the search space, rather

than a score-equivalent set of networks chosen from independent regions of the space

(Niculescu-Mizil and Caruana, 2007).

Existing multitask methods for unsupervised problems typically assume that all

pairs of tasks are equally related. This assumption makes these algorithms too rigid

to handle datasets where di↵erent pairs of tasks have widely varying degrees of task-

relatedness. Furthermore, they provide no mechanism for incorporating human ob-

jectives for which learned networks should be most similar to each other. A few spe-

cialized multitask network structure learning applications have recently incorporated

specific domain knowledge about task-relatedness (Dondelinger, Lèbre, and Husmeier,

2010; Husmeier, Dondelinger, and Lèbre, 2010; Liu et al., 2010).

Chapter 3. Prior Domain Knowledge about Task-Relatedness 29

T
o

w
a

rd
 Z

e
ro

-D
a

ta
 L

e
a

rn
in

g
 o

f
B

a
y

e
s

ia
n

 N
e

tw
o

rk
s

D
ia

n
e

 O
y

e
n

T
e

rr
a

n
 L

a
n

e

[d
o
y
en

,
te

rr
an

]@
cs

.u
n
m

.e
d
u

T
y

p
e

to
 e

n
te

r
te

x
t

A
ck

n
o
w

le
d
g
em

en
ts

:
T

h
an

k
 y

o
u
 t

o
 V

in
ce

 C
la

rk
 a

t
th

e
M

IN
D

 R
es

ea
rc

h
 N

et
w

o
rk

 f
o
r

d
at

a
an

d
 d

is
cu

ss
io

n
s.

 W
o
rk

 f
u
n
d
ed

 b
y
 a

 g
ra

n
t

fr
o
m

 N
S

F
:

II
S

-0
7
0
5
6
8
1
.

ta
rg

et

ta
sk

E
x

p
e

ri
m

e
n

ts
S

y
n

th
et

ic
 d

at
a

fr
o

m
 N

et
S

im
 (

S
m

it
h

 e
t

al
,

2
0

1
1

).

•
S

im
u

la
ti

o
n

s
w

it
h

 1
0

-
an

d
 1

5
-v

ar
ia

b
le

s
n

et
w

o
rk

s.

•
F

o
ld

 o
v

er
 1

0
 t

ra
in

in
g

 s
et

s
o

f
d

if
fe

re
n

t
n

et
w

o
rk

s.

•
N

o
d

e
la

b
el

s
ar

e
sw

ap
p

ed
 t

o
 c

re
at

e
re

la
te

d
,

b
u

t

d
if

fe
re

n
t

g
ro

u
n

d
 t

ru
th

 n
et

w
o

rk
s.

•
fM

R
I-

li
k

e
sy

n
th

et
ic

 d
at

a
g

en
er

at
ed

 f
ro

m
 t

h
es

e

n
et

w
o

rk
s

(f
ro

m
 S

m
it

h
 e

t
al

).

Z
er

o
-d

at
a

te
st

s

•
T

as
k

-r
el

at
ed

n
es

s
d

es
cr

ib
ed

 o
v

er
 8

 t
as

k
s

•
D

at
a

g
iv

en
 o

n
 4

 t
as

k
s

•
H

o
ld

o
u

t
1

 t
as

k
 f

o
r

ze
ro

-d
at

a
es

ti
m

at
io

n

C
o

m
p

ar
e

ze
ro

-d
at

a
al

g
o

ri
th

m
 t

o
:

•
L

ea
rn

in
g

 “
av

er
ag

e”
 n

et
w

o
rk

 b
y

 p
o

o
li

n
g

 d
at

a.

•
L

ea
rn

in
g

 n
et

w
o

rk
 f

ro
m

 d
at

a
w

it
h

o
u

t
tr

an
sf

er
.

A
d
ja

ce
n
cy

 m
a
tr

ic
es

 o
f

sy
n
th

et
ic

 n
et

w
o
rk

s.

N

o
te

,
ta

sk
-

re
la

te
d
n
es

s
m

et
ri

c
is

 t
h
e

sa
m

e
fo

r
a
ll

 d
a
ta

 s
et

s,
 h

o
w

ev
er

 t
h
e

a
ct

u
a
l

n
u
m

b
er

 o
f

d
if

fe
re

n
ce

s
b
et

w
ee

n
 t

a
sk

 m
o
d
el

s
ch

a
n
g
es

.

M
o

ti
v

a
ti

o
n

Z
er

o
-d

a
ta

 l
ea

rn
in

g
 o

f
u

n
su

p
er

v
is

ed
 t

a
sk

s.

L
ea

rn
 m

o
d

el
s

fr
o

m
 r

el
at

ed
 d

at
as

et
s

an
d

 e
st

im
at

e
n

o
v

el
 r

el
at

ed
 m

o
d

el
s

fo
r

w
h

ic
h

 t
h

er
e

is
 n

o
 d

at
a.

D
e
p
a
rt

m
e
n

t
o
f
C

o
m

p
u

te
r

S
c
ie

n
c
e

W
h

y
 d

o
 w

e
 c

a
re

?
•

T
ra

n
sf

er
 a

n
d

 u
n

su
p

er
v

is
ed

 l
ea

rn
in

g
 m

ay
 b

e
k

ey
s

to
 g

et
ti

n
g

 c
lo

se
r

to
 h

u
m

a
n

 l
ea

rn
in

g
.

•
Z

er
o

-d
at

a
le

ar
n

in
g

 i
s

ex
tr

em
e

tr
a

n
sf

er
.

•
P

ro
d

u
ce

 a
 b

ia
s

o
r

p
re

d
ic

ti
o

n
 f

o
r

w
h

at
 t

o
 d

o
 w

h
en

 f
ac

in
g

 a
 n

ew
 t

as
k

.

•
W

h
at

 t
o

 d
o

 o
n

 d
ay

 o
n

e
o

f
a

n
ew

 j
o

b
?

E
as

ie
r

to
 a

n
sw

er
 i

f
it

 i
s

n
o

t
th

e
fi

rs
t

n
ew

 j
o

b
.

•
T

es
t

tr
a

n
sf

er
 p

ar
t

o
f

tr
an

sf
er

 l
ea

rn
in

g

•
H

o
w

 m
u

ch
 p

er
fo

rm
an

ce
 d

o
es

 t
ra

n
sf

er
 p

ro
v

id
e

w
it

h
o

u
t

n
ew

 d
at

a?

•
A

ct
iv

e
le

a
rn

in
g
 f

o
r

ta
sk

 s
el

ec
ti

o
n

•
A

lg
o

ri
th

m
 c

an
 d

et
er

m
in

e
w

h
ic

h
 t

as
k

s
ca

n
 t

ra
n

sf
er

 t
o

 e
as

il
y

 w
it

h
o

u
t

d
at

a.

•
A

lg
o

ri
th

m
 c

an
 d

et
er

m
in

e
w

h
ic

h
 t

as
k

s
n

ee
d

 d
at

a
to

 l
ea

rn
 a

 g
o

o
d

 m
o

d
el

.

•
A

lg
o

ri
th

m
 c

an
 d

et
er

m
in

e
h

o
w

 m
u

ch
 d

at
a

n
ee

d
ed

 f
o

r
a

n
ew

 t
as

k
.

T
a

sk
 r

el
a

te
d

n
es

s
D

a
ta

 p
er

 t
a

sk
M

o
d

el
 p

er
 t

a
sk

 a
n

d
 e

x
te

n
d

 t
o

 n
o

v
el

 t
a

sk
s

+
=

>

L
e

a
rn

in
g

 F
ra

m
e

w
o

rk
In

p
u

ts
:

T
as

k
-r

el
at

ed
n

es
s

m
et

ri
c

T
ra

in
in

g
 d

at
a

fo
r

so
m

e
ta

sk
s

G
e

n
e

ra
ti

v
e

 M
o

d
e

l

E
x

a
m

p
le

:
L

e
a

rn
in

g
 f

u
n

c
ti

o
n

a
l

b
ra

in
 n

e
tw

o
rk

s

fr
o

m
 s

u
b

je
c

ts
 o

n
 v

a
ri

o
u

s
 d

ru
g

 t
re

a
tm

e
n

ts
•

G
o

al
:

L
ea

rn
 t

h
e

b
ra

in
 n

et
w

o
rk

 r
es

u
lt

in
g

 f
ro

m
 c

o
m

b
in

at
io

n
s

o
f

3

d
if

fe
re

n
t

tr
ea

tm
en

t
d

ru
g

s
fo

r
a

m
en

ta
l

il
ln

es
s.

•
O

n
e

ta
sk

 p
er

 d
ru

g
 c

o
m

b
in

at
io

n
.

D
e
fi

n
e
 t

a
s
k
-r

e
la

te
d

n
e
s
s
 m

e
tr

ic
 f

o
r

d
ru

g
 c

o
m

b
in

a
ti

o
n

s

L
et

 t
as

k
 s

im
il

ar
it

y
 b

e
th

e

H
am

m
in

g
 d

is
ta

n
ce

 o
f

b
in

ar
y

 d
ru

g

co
m

b
in

at
io

n
 v

ec
to

rs
.

i.
e.

 T
ak

in
g

 a
ll

 3
 d

ru
g

s

{
1
1
1

}
 i

s
m

o
st

 s
im

il
ar

to
 t

ak
in

g
 2

 o
f

3
 d

ru
g

s

{
1
1

0
,

1
0

1
,

0
1
1

}
.

?

?

fM
R

I
d

a
ta

 g
iv

e
n

 f
o

r
s
o

m
e
 t

a
s
k
s

T
as

k
 l

ab
el

s
ar

e
k

n
o

w
n

.

i.
e.

 W
e

k
n

o
w

 w
h

ic
h

d
ru

g
 t

re
at

m
en

t
ea

ch

su
b

je
ct

 i
s

ta
k

in
g

.

M
u

lt
it

a
s
k
 l
e
a
rn

 n
e
tw

o
rk

s
 f

o
r

ta
s
k
s
 w

it
h

 d
a
ta

•
O

p
ti

m
iz

e
sc

o
re

 a
cr

o
ss

 a
ll

n
et

w
o

rk
s.

•
R

eg
u

la
ri

za
ti

o
n

te
rm

 p
en

al
iz

es

d
if

fe
re

n
ce

s

b
et

w
ee

n
 t

as
k

m
o

d
el

s.

Z
e
ro

-d
a
ta

 l
e
a
rn

 n
e
tw

o
rk

s
 f

o
r

q
u

e
ri

e
d

 t
a
s
k
s
 w

it
h

o
u

t
d

a
ta

L
=

1 2

X i,
j

w
ij
d
i
�

(G
i,

G
j
)

m
in

G
q

" X i

w
iq

d
i
�

(G
i,

G
q
)#

s
.t

.
G

q
i
s

D
A

G

R
e

s
u

lt
s

C
o

m
p

a
re

 t
o

 l
e
a
rn

in
g

 “
a
v
e
ra

g
e
”
 n

e
tw

o
rk

 b
y
 p

o
o

li
n

g
 d

a
ta

E
d
it

 d
is

ta
n
ce

 t
o
 g

ro
u
n
d
 t

ru
th

 f
o
r

1
0
-n

o
d
e

n
et

w
o
rk

s
(t

o
p
)

a
n
d
 1

5
-n

o
d
e

n
et

w
o
rk

s
(b

o
tt

o
m

),
 f

o
r

le
a
st

 n
u
m

b
er

 o
f

d
if

fe
re

n
ce

s
b
et

w
ee

n
 t

a
sk

s
(l

ef
t)

 t
o
 m

o
st

 d
if

fe
re

n
ce

s
(r

ig
h
t)

.

•A
v

er
ag

e
n

et
w

o
rk

 p
er

fo
rm

s
as

 w
el

l
as

 z
er

o
-

d
at

a
if

 t
h

er
e

ar
e

fe
w

 d
if

fe
re

n
ce

s
b

et
w

ee
n

 t
as

k
s

•A
s

d
if

fe
re

n
ce

s
b

et
w

ee
n

 t
as

k
s

in
cr

ea
se

s,
 z

er
o

-

d
at

a
co

n
ti

n
u

es
 t

o
 p

er
fo

rm
 w

el
l

w
h

il
e

th
e

av
er

ag
e

m
o

d
el

 g
et

s
w

o
rs

e.

C
o

m
p

a
re

 t
o

 s
in

g
le

 t
a
s
k
 l
e
a
rn

in
g E

d
it

 d
is

ta
n
ce

 t
o
 g

ro
u
n
d
 t

ru
th

 f
o
r

1
0
-n

o
d
e

n
et

w
o
rk

s
(l

ef
t)

 a
n
d
 1

5
-n

o
d
e

n
et

w
o
rk

s
(r

ig
h
t)

.

•L
ea

rn
in

g
 w

it
h

 d
at

a
(S

T
L

)
is

 b
et

te
r,

 u
n

le
ss

 t
h

er
e

ar
e

v
er

y
 f

ew

sa
m

p
le

s
(<

8
0

 f
o

r
th

e
1

5
-n

o
d

e
n

et
w

o
rk

),
 t

h
en

 z
er

o
-d

at
a

ca
n

ac
tu

al
ly

 d
o

 b
et

te
r

b
y

 u
si

n
g

 m
o

d
el

s
o

f
si

m
il

ar
 t

as
k

s.

W
h

a
t

if
 t

h
e
 t

a
s
k
-r

e
la

te
d

n
e
s
s
 m

e
tr

ic
 i
s
 w

ro
n

g
?

E
d
it

 d
is

ta
n
ce

 t
o
 g

ro
u
n
d
 t

ru
th

 f
o
r

1
0
-n

o
d
e

n
et

w
o
rk

s
(l

ef
t)

 a
n
d
 1

5
-n

o
d
e

n
et

w
o
rk

s
(r

ig
h
t)

,
fo

r
co

rr
ec

t
ta

sk
-r

el
a
te

d
n
es

s
m

et
ri

c
(b

lu
e)

 a
n
d
 w

ro
n
g
 m

et
ri

c

(r
ed

)
fo

r
th

re
e

d
if

fe
re

n
t

ri
g
h
t

a
n
d
 w

ro
n
g
 m

et
ri

cs
.

•P
er

fo
rm

an
ce

 o
f

ze
ro

-d
at

a
le

ar
n

in
g

 d
eg

ra
d

es
 w

it
h

 b
ad

 t
as

k
-

re
la

te
d

n
es

s
in

fo
rm

at
io

n
.

•P
er

fo
rm

an
ce

 d
ro

p
 i

n
cr

ea
se

s
w

it
h

 d
if

fe
re

n
ce

s
b

et
w

ee
n

 t
as

k
s.

N
e
tw

o
rk

s
 l
e
a
rn

e
d

L
ea

rn
ed

 a
d
ja

ce
n
cy

 m
a
tr

ic
es

 a
ve

ra
g
ed

 o
ve

r
fo

ld
s

-
fo

r
1
0
-n

o
d
e

(l
ef

t)
 a

n
d
 1

5
-n

o
d
e

(r
ig

h
t)

n
et

w
o
rk

s,
 f

o
r

in
cr

ea
si

n
g
 n

u
m

b
er

 o
f

d
if

fe
re

n
ce

s

b
et

w
ee

n
 t

a
sk

s,
 f

ro
m

 f
o
ld

 (
a
)

to
 f

o
ld

 (
c)

.

•W
it

h
 m

o
re

 d
at

a,
 z

er
o

-l
ea

rn
ed

 m
o

d
el

s

b
ec

o
m

e
m

o
re

 r
o

b
u

st
 a

cr
o

ss
 t

ra
in

in
g

fo
ld

s.

C
o

n
c

lu
s

io
n

s
•

G
iv

en
 a

 g
o

o
d

 t
as

k
-r

el
at

ed
n

es
s

m
et

ri
c,

 t
ra

n
sf

er
 m

ak
es

 r
ea

so
n

ab
le

 p
re

d
ic

ti
o

n
s.

•
P

re
d

ic
ti

o
n

s
fr

o
m

 t
ra

n
sf

er
 w

it
h

o
u

t
d

at
a

ar
e

b
et

te
r

th
an

 l
ea

rn
in

g
 w

it
h

 l
im

it
ed

 d
at

a.

•
T

as
k

-r
el

at
ed

n
es

s
m

et
ri

c
o

ft
en

 i
m

p
ro

v
es

 t
ra

n
sf

er
 o

v
er

 p
o

o
li

n
g

 d
at

a.

•
T

ra
n

sf
er

 o
f

m
o

d
el

 p
ar

am
et

er
s

is
 m

o
re

 c
o

m
p

ac
t

w
ay

 o
f

st
o

ri
n

g
 i

n
fo

rm
at

io
n

 f
o

r
fu

tu
re

 t
ra

n
sf

er

th
an

 s
to

ri
n

g
 d

at
a

w
it

h
o

u
t

lo
ss

 o
f

tr
an

sf
er

 p
er

fo
rm

an
ce

.

1
0
 v

a
ri

a
b
le

s
1
5
 v

a
ri

a
b
le

s

In
cr

ea
si

n
g

d
if

fe
re

n
ce

s
b
et

w
ee

n

a
d
ja

ce
n
t

ta
sk

s

S
y

n
th

e
ti

c
 N

e
tw

o
rk

s

1
1
1

1
1
0

1
0
1

0
1
1

0
1
0

1
0
0

0
0
0

0
0
1

F
o

r
ea

ch
 q

u
er

ie
d

ta
sk

,
le

ar
n

 a
 m

o
d

el

b
y

 m
in

im
iz

in
g

w
ei

g
h

te
d

d
if

fe
re

n
ce

s
to

re
la

te
d

 t
as

k
s.

Μ

G G
X

N
T

ta
sk

s
d

at
a

sa
m

p
le

s

d
a

ta
 o

b
se

rv
ed

 f
o

r
so

m
e

ta
sk

s,
 b

u
t

n
o

t
o

th
er

s

ta
sk

-r
el

at
ed

n
es

s
m

et
ri

c
in

fl
u

en
ce

s
in

te
r-

d
ep

en
d

en
ce

 o
f

m
o

d
el

s

m
o

d
el

 p
ri

o
r

ta
sk

-s
p

ec
ifi

c
m

o
d

el

Z
e

ro
-d

a
ta

 l
e

a
rn

in
g

•
E

x
p

lo
re

d
 i

n
 s

u
p

er
v

is
ed

 l
ea

rn
in

g
 p

ro
b

le
m

s
to

 p
re

d
ic

t
th

e
la

b
el

s
o

f
n

o
v

el
 c

la
ss

es
 o

f
d

at
a.

•
R

eq
u

ir
es

 k
n

o
w

le
d

g
e

ab
o

u
t

th
e

re
la

te
d

n
es

s
o

f
cl

as
se

s,
 a

ls
o

 c
al

le
d

 t
h

e
d

es
cr

ip
ti

o
n

 o
f

ta
sk

s.

•
T

h
e

cl
as

si
fi

er
 f

u
n

ct
io

n
 i

s
ac

tu
al

ly
 a

 c
o

ll
ec

ti
o

n
 o

f
fu

n
ct

io
n

s
w

h
ic

h
 d

ep
en

d
 o

n
 t

h
e

ta
sk

d
es

cr
ip

ti
o

n
s

(L
ar

o
ch

el
le

 e
t

al
,

2
0

0
8

).

•
N

o
t

y
et

 e
x

p
lo

re
d

 i
n

 u
n

su
p

er
v

is
ed

 l
ea

rn
in

g
.

•
P

ro
p

o
se

 s
im

il
ar

 a
p

p
ro

ac
h

 f
o

r
u

n
su

p
er

v
is

ed
 t

as
k

s,
 w

h
er

e
th

e
m

o
d

el
s

fo
r

ea
ch

 t
as

k
 a

re
 a

ss
u

m
ed

to
 b

e
re

la
te

d
 t

h
ro

u
g

h
 s

o
m

e
ta

sk
 d

es
cr

ip
ti

o
n

,
ca

ll
ed

 t
h

e
ta

sk
-r

el
at

ed
n

es
s

m
et

ri
c.

+
=

>
..

.

n
o
-d

ru
gs

d
ru

gA
d
ru

gB

+
=

>
..

.

ye
as

t
fl
y

h
u
m

an

+
=

>
..

.

fi
sh

sp
o
rt

to
o
l

la
n
d
sc

ap
e

S
te

p
 1

)

M

u
lt

it
as

k
 l

ea
rn

 m
o

d
el

s
fr

o
m

 g
iv

en
 d

at
a

S
te

p
 2

)

Z

er
o

-d
at

a
le

ar
n

 m
o

d
el

s
fo

r
q

u
er

ie
d

 t
as

k
s

R
e

fe
re

n
c

e
s

H
.
L

a
ro

ch
el

le
,
D

.
E

rh
a
n
,
a
n
d
 Y

.
B

en
g
io

,
“

Z
er

o
-d

a
ta

 l
ea

rn
in

g
 o

f
n
ew

 t
a
sk

s,
”

 i
n
 A

A
A

I’
0
8
,
2
0
0
8
.

S
.
M

.
S

m
it

h
 e

t
al

.,
 “

N
et

w
o
rk

 m
o
d
el

li
n
g
 m

et
h
o
d
s

fo
r

F
M

R
I,

”
N

eu
ro

Im
a
g
e,

 v
o
l.

 5
4
,
n
o
.
2
,
2
0
1
1
.

tr
ai

n
 s

iz
e

p
er

 t
as

k
tr

ai
n
 s

iz
e

p
er

 t
as

k

S
c
o
r
e

m
u
lt
i
=

(1
�

↵
)

�
T X i=

1

S
c
o
r
e
(G

i|X
i)

�
�

↵
L

F
ig
u
re

3.
1:

E
xa

m
p
le

ap
p
li
ca
ti
on

s
fo
r
le
ar
n
in
g
m
u
lt
ip
le

n
et
w
or
ks
.
K
n
ow

le
d
ge

ab
ou

t
ta
sk
-r
el
at
ed
n
es
s
is

p
ro
vi
d
ed

by
a
d
om

ai
n

ex
p
er
t,
su
ch

as
th
e
re
la
ti
on

sh
ip

am
on

g
sc
h
iz
op

h
re
n
ia

su
b
je
ct
s
(t
op

)
or

am
on

g
sp
ec
ie
s
in

an
ev
ol
u
ti
on

ar
y
tr
ee

(b
ot
to
m
).
D
at
a
is

av
ai
la
b
le

fo
r
ea
ch

ta
sk

in
th
e
fo
rm

of
a
d
at
a
m
at
ri
x
co
m
p
ri
si
n
g
se
ve
ra
l
sa
m
p
le
s
of

a
m
u
lt
iv
ar
ia
te

ra
n
d
om

ve
ct
or
.
T
h
e
le
ar
n
in
g

p
ro
b
le
m

th
en

is
to

id
en
ti
fy

a
n
et
w
or
k
m
od

el
of

d
ep

en
d
en
ci
es

fo
r
ea
ch

ta
sk
.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 30

The first contribution of this dissertation is to introduce a framework for multitask

structure learning that relaxes the assumption that tasks are equally related. In many

applications we have prior beliefs about the relatedness of tasks based on metadata

or domain expert knowledge. Using this framework, we develop the first multitask

Bayesian network structure learning algorithm to incorporate task-relatedness as a

parameter. With this algorithm we explore various factors in the problem space:

the number of tasks, the true similarity between tasks, and the topology of task-

relatedness. We compare the performance of the algorithm with naive algorithms

(those without task-relatedness knowledge). This new algorithm generalizes to vali-

dation data and fits ground truth better than naive algorithms.

Finally, functional brain networks are learned from neuroimaging data with this

Bayesian network algorithm. For a given pool of subjects, there are a number of

“natural” task divisions (e.g, pooling by age or by medication). We explore di↵er-

ent divisions of subjects into tasks, with corresponding task-relatedness metrics and

discuss the interesting patterns found by the algorithm. Domain knowledge about

task-relatedness improves both the robustness of learned networks and addresses hu-

man objectives.

3.2 Related Work

Multitask learning algorithms generally represent the similarity among tasks in one

of three ways: all tasks are assumed to be equally similar (Caruana, 1997; Niculescu-

Mizil and Caruana, 2007); the similarity among tasks is estimated from the same

data that is used to train the model (Eaton, desJardins, and Lane, 2008; Thrun and

O’Sullivan, 1996); or the similarity between tasks is provided by another source such as

task-specific domain information or an expert (Bakker and Heskes, 2003). This third

option, which we apply to network structure learning, has been used successfully for

zero-shot classification problems when no training data are available for certain tasks

(Larochelle, Erhan, and Bengio, 2008; Palatucci et al., 2009).

Multitask learning has been applied to learn Gaussian graphical models (Hon-

Chapter 3. Prior Domain Knowledge about Task-Relatedness 31

orio and Samaras, 2010) and Bayesian networks (Luis, Sucar, and Morales, 2009;

Niculescu-Mizil and Caruana, 2007). Unlike our framework, these models assume

that all tasks are equally related. There is recent work in specialized application-

specific algorithms that share information only between tasks that are believed to be

most similar (Dondelinger, Lèbre, and Husmeier, 2010; Husmeier, Dondelinger, and

Lèbre, 2010; Liu et al., 2010). These applications demonstrate the benefit of domain

knowledge.

3.3 Preliminaries: Multitask Structure Learning

Probabilistic graphical models compactly describe joint probability distributions by

encoding independencies in multivariate data. Multitask learning in graphical models

enforces a bias toward learning similar independency patterns among tasks. We in-

troduce a general framework for multitask learning of graphical models with domain

knowledge by optimizing the likelihood of the data given the learned model with a

Bayesian prior over the model with a task-relatedness metric. We show that two ex-

isting applications are examples of our general model, and then use the framework to

develop a novel algorithm.

A Bayesian network B = {G, ✓} describes the joint probability distribution over n

random variables X = [X1, X2, . . . , Xn], where G is a directed acyclic graph and the

conditional probability distributions are parameterized by ✓ (Heckerman, Geiger, and

Chickering, 1995). An edge (Xi, Xj) in G means that the child Xj is conditionally in-

dependent of all non-descendants given its parent Xi. A Markov random field (MRF)

encodes similar conditional independencies with an undirected graphical model (Kin-

dermann and Snell, 1980). The structure of the network, G, is of particular interest

in many domains as it is easy to interpret and gives valuable information about the

interaction of variables.

A set of tasks with data sets Dk and networks Gk for k 2 {1, . . . , K} can be

Chapter 3. Prior Domain Knowledge about Task-Relatedness 32

learned by optimizing:

P (G1:K |D1:K) / P (D1:K |G1:K)P (G1:K) , (3.1)

where P (G1:K) is a joint prior distribution over network structures. Assumptions

about the similarity of network structures are encoded in this joint distribution. The

simplest naive assumption is to assume that the K tasks are independent of each

other. We refer to this model as single-task learning (STL) because it is equivalent

to learning each model individually. By breaking the prior into independent single-

task learning problems, STL assumes that all tasks are independent of each other,

simplifying Equation 4.4 to:

PSTL(G1:K |D1:K) / QK
k=1P (Dk|Gk)P (Gk) .

Multitask learning (MTL) does not assume that tasks are independent; however, it

does generally assume that P (Dk|Gk) is independent of all other Gi so Equation 4.4

simplifies to:

PMTL(G1:K |D1:K) / P (G1:K)
QK

k=1P (Dk|Gk) .

In multitask learning, the joint structure prior, P (G1:K), is used to encode a bias

toward similar structures. We can decompose this joint distribution into a product of

conditionals, so that P (G1:K) = P (G1)
QK

i=2 P (Gi|G1:i�1). Many multitask algorithms

(including those outlined in this chapter), make a further simplifying assumption

that P (Gk|G1:k�1) =
Qk�1

i=1 P (Gk|Gi). That is, the joint prior over structures can be

described by pairwise sharing of information among tasks:

P (G1:K) ,
KY

i=2

P (Gi)
i�1Y

j=1

P (Gi|Gj) . (3.2)

3.4 Task-Relatedness Aware Multitask Learning

We introduce our general framework for incorporating prior knowledge about task-

relatedness in multitask structure learning. The goal is to include a weighting scheme

for the amount of information sharing between di↵erent pairs of tasks. First, we define

Chapter 3. Prior Domain Knowledge about Task-Relatedness 33

k1

k2

k3
k4 k5

k6

k7

k8
!3,7

!2,6

! 7,
8

! 1,
2

!4,6

!
1,3

!5,8!1,4

!
6,8

!3,5

!2,5

!4,7

v1 v1

v1

v1

v1v1

v1

v1

v2

v2

v2

v2 v2

v2

v2

v2v3

v3

v3

v3 v3

v3

v3

v3
v4

v4

v4

v4 v4

v4

v4

v4

Figure 3.2: Task-relatedness graph: square vertices are tasks, weighted edges are task-
relatedness. Small circles within each task are variables of task-specific networks.

!

G

G X
K tasks

data samples

data observed
task-relatedness metric

influences inter-
dependence of models

model prior

task-specific model M

Figure 3.3: Generative model of multitask network structure learning use plate nota-
tion.

a symmetric matrix, µ, of size K ⇥ K where each element, µij � 0, describes prior

information about the degree of relatedness between tasks i and j. These values come

from a task-relatedness metric that describes the degree of relatedness of pairs of

tasks. Figure 3.2 shows an example of what such a metric could look like. We find it

more convenient to work with the inverse of the metric so that µij = 0 means that the

tasks are independent, and large values of µij mean a high degree of relatedness. Then,

using the general description of the joint prior over network structure, in Equation 3.2,

we use µ to weight the transfer bias among pairs of tasks. With this additional input

about the relatedness of tasks, the new Task-Relatedness Aware Multitask (TRAM)

generative model is shown using plate notation in Figure 3.3. The TRAM learning

objective to maximize is:

PTRAM (G1:K |D1:K ,µ) / P (G1:K |µ)
KY

i=1

P (Di|Gi)

P (G1:K |µ) , 1

Zµ

QK
i=2 P (Gi)

Qi�1
j=1P (Gi|Gj)µij .

(3.3)

The key benefits of the TRAM framework are that it:

Chapter 3. Prior Domain Knowledge about Task-Relatedness 34

• Introduces a task-relatedness metric that allows explicit control over information

sharing among tasks.

• Subsumes MTL (all elements of µ are 1) and STL (all elements of µ are 0).

• Includes existing application-specific models as discussed in Section 3.4.2.

• Provides a convenient mechanism for incorporating task-relatedness in any mul-

titask network structure learner, such as our Bayesian network learner discussed

in the next section.

This framework is general enough to cover any network structure learning algo-

rithm that enforces bias between pairs of tasks. Extensions would be required to

cover higher-order relationships among tasks, such as describing task-relatedness as

a Markov random field with appropriate higher-order potential functions to penalize

di↵erences among related tasks.

3.4.1 Multitask Learning of Bayesian Networks

Our novel task-relatedness aware multitask Bayesian network structure learning algo-

rithm illustrates the use of the framework. To apply the objective function in Equa-

tion 3.3 to multitask Bayesian networks we define P (Di|Gi) as the Bayesian likelihood

score P (D|G) =
R
P (D|G, ✓)P (✓|G)d✓. The prior over structures encodes the bias to-

ward similar structures by penalizing di↵erences in edges among tasks:

P (Gi|Gj) ,
1

Zij
(1 � ↵)�(Gi,Gj) ,

where � is a graph distance metric. The parameter ↵ 2 [0, 1] controls the relative

strength of fit to data versus bias toward similar models. When ↵ = 0, the objective

function is equivalent to learning the tasks independently. When ↵ = 1 the only

solutions that produce a non-zero probability are those in which �(Gi, Gj) = 0,

in other words all structures must be identical. The parameters are always inferred

independently for each task.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 35

Any graph distance metric can be used for � depending on the desired definition

of structure similarity. If all Di come from analogous random variables, the distance

metric can be a simple graph edit distance. In our experiments, we use edit distance

(the number of edge additions, deletions or reversals necessary to change Gi into Gj).

Optimization of the multitask Bayesian network structure learning objective pro-

ceeds by searching over the space of directed acyclic graphs (DAG) for a high-scoring

set of DAGs. We follow a commonly used search heuristic, greedy search, which starts

from an initial structure and then iteratively makes the best change (the addition,

deletion or reversal of a single edge) to the network structure until no further improve-

ments can be made. The best change is the one that gives the greatest improvement

in score. We are optimizing several network structures simultaneously, therefore one

edge in each task can be changed at each iteration. Incorporating the task-relatedness

metric does not incur any computational cost above standard multitask learning.

3.4.2 Special Cases

Now we show how the framework subsumes two application-specific examples from

the literature. The dynamic Bayesian network structure learning algorithms with

inter-time segment sharing in Husmeier, Dondelinger, and Lèbre (2010) and Don-

delinger, Lèbre, and Husmeier (2010) can be written using the TRAM framework as

follows. Each time segment is a task i for which they learn a graph Gi that is biased

toward having a similar structure to the graph of the previous time segment Gi�1.

The structure prior is P (G1:K) = P (G1)
QK

i=2(1/Zi) exp(���(Gi, Gi�1)), where � is

a hyper-parameter and �(Gi, Gj) is the Hamming distance between edge sets. To

fit into our framework, we write the prior according to Equation 3.3 with the task-

relatedness metric defined as µij = 1 for i = {2 . . . K} and j = i � 1, and µij = 0

otherwise.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 36

3.5 Experiments on Synthetic Data

We empirically evaluate our TRAM Bayesian network learning algorithm on synthetic

and real-world data. For comparison, we also learn each network independently with

single-task learning (STL) and learn a single network structure for all contexts (AVG),

so named because this assumes that there is some “average” network that is repre-

sentative of all tasks. Note that AVG learns the same structure for all tasks, but the

parameters are independent of the other tasks. We also compare against a standard

multitask learning algorithm (MTL) that assumes all tasks are equally related (all

µij = 1) (Niculescu-Mizil and Caruana, 2007). For these experiments, we use greedy

structure search, starting from an empty network and use a Bayesian score. For TRAM

and MTL, we tune the strength parameter, ↵, with a small holdout set (10% of the

training data). All reported results are averaged over 10-fold cross validation.

3.5.1 NetSim Data

We use benchmark data from Smith et al. (2011) which is generated from known net-

works to simulate rich realistic functional magnetic resonance imaging (fMRI) data.

The purpose of this benchmark data is to provide a means to compare how well vari-

ous algorithms identify the underlying dependencies among variables. They generate

data using a hemodynamic response model (Friston, Harrison, and Penny, 2003). We

quantize the given continuous data into binary and fit multinomial functions when

learning the networks. We use the benchmark data for 50 synthetic subjects with 200

training samples per subject from 50-node networks. The given network structures

for all subjects are identical (the functional relationships between nodes are subject-

specific) but we are interested in models where the structure di↵ers. Therefore, we

modify the structures by re-labeling various numbers of nodes for some tasks and

then combining those re-labelings for other tasks. For example, in the first column

of Figure 3.4 the adjacency matrix for a given network is used as the first task. To

create a related task, we swap the node labels between a few pairs of nodes thus

changing some edges of the adjacency matrix as seen in the next task. Re-labeling

Chapter 3. Prior Domain Knowledge about Task-Relatedness 37

produces isomorphic networks, so that we can use the data provided and maintain

the general properties of each network while giving di↵erent-looking network struc-

tures to the structure learning algorithms. TRAM is not given the true measure of

similarity between tasks, instead we set µij = 1 for each pair of tasks i, j with an edge

in the task-relatedness topology, and 0 otherwise. Figure 3.4 shows the ground truth

networks derived from the benchmark data.

chain tree cube flat

d
=

16

Thursday, October 20, 11
Thursday, October 20, 11

Thursday, October 20, 11
Thursday, October 20, 11

d
=

8

Thursday, October 20, 11
Thursday, October 20, 11

Thursday, October 20, 11
Thursday, October 20, 11

d
=

4

Friday, October 14, 11

Friday, October 14, 11

Monday, October 10, 11 Monday, October 10, 11

d
=

2

Thursday, October 20, 11

Thursday, October 20, 11

Thursday, October 20, 11
Thursday, October 20, 11

Figure 3.4: Ground truth of NetSim data networks (for one example fold). Each square
node in the task-relatedness graph represents a task. The square itself is an image of the
adjacency matrix of the ground truth network where dots in the images represent directed
edges in the ground truth network. The lines between nodes in the task-relatedness topology
indicate that the two tasks are similar with µij = 1. Note that when fewer than 8 tasks are
used to learn models, we take the first 2, 4, or 6 tasks from the set of 8 tasks.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 38

T
o
p
o
lo
g
y
:
ch
ai
n

tr
ee

cu
b
e

fl
at

Fr
id

ay
, O

ct
ob

er
 1

4,
 1

1

Fr
id

ay
, O

ct
ob

er
 1

4,
 1

1
lo

g(
0)

−2
0

−1
5

−1
0

−5
0

02040608010
0

lo
g(

1−
α

)

% improvement

8%
 c

ha
ng

ed
16

%
 c

ha
ng

ed
32

%
 c

ha
ng

ed
64

%
 c

ha
ng

ed
lo

g(
0)
−2

0
−1

5
−1

0
−5

0
02040608010
0

lo
g(

1−
α

)

% improvement

lo
g(

0)
−2

0
−1

5
−1

0
−5

0
02040608010
0

lo
g(

1−
α

)

% improvement

lo
g(

0)
−2

0
−1

5
−1

0
−5

0
02040608010
0

lo
g(

1−
α

)

% improvement

tr
u
e

T
R

A
M

M
T

L
S
T

L
tr

u
e

T
R

A
M

M
T

L
S
T

L
tr

u
e

T
R

A
M

M
T

L
S
T

L
tr

u
e

T
R

A
M

M
T

L
S
T

L

2
4

6
8

40506070

nu
m

be
r o

f t
as

ks

edit distance

TR
AM

M
TL

ST
L

AV
G

2
4

6
8

40506070

nu
m

be
r o

f t
as

ks

edit distance

2
4

6
8

40506070

nu
m

be
r o

f t
as

ks

edit distance

2
4

6
8

40506070

nu
m

be
r o

f t
as

ks

edit distance

2
4

6
8

−3
6.

5

−3
6

−3
5.

5

nu
m

be
r o

f t
as

ks

log likelihood

2
4

6
8

−3
6.

5

−3
6

−3
5.

5

nu
m

be
r o

f t
as

ks

log likelihood

2
4

6
8

−3
6.

5

−3
6

−3
5.

5

nu
m

be
r o

f t
as

ks
log likelihood

2
4

6
8

−3
6.

5

−3
6

−3
5.

5

nu
m

be
r o

f t
as

ks

log likelihood

TR
AM

M
TL

ST
L

AV
G

F
ig
u
re

3.
5:

N
et

S
im

d
at

a
re

su
lt

s.
T
o
p
r
o
w
:
O

u
r
ge

n
er

at
ed

ta
sk

-r
el

at
ed

n
es

s
to

p
ol

og
ie

s.
E

ac
h

sq
u
ar

e
n
od

e
in

th
e

to
p
ol

og
y

gr
ap

h
re

p
re

se
nt

s
a

ta
sk

.
T

h
e

sq
u
ar

e
it

se
lf

is
an

im
ag

e
of

th
e

ad
ja

ce
n
cy

m
at

ri
x

of
th

e
gr

ou
n
d

tr
u
th

n
et

w
or

k
w

h
er

e
d
ot

s
in

th
e

im
ag

es
re

p
re

se
nt

d
ir

ec
te

d
ed

ge
s

in
th

e
gr

ou
n
d

tr
u
th

n
et

w
or

k.
T

h
e

li
n
es

b
et

w
ee

n
n
od

es
in

th
e

ta
sk

-r
el

at
ed

n
es

s
to

p
ol

og
y

in
d
ic

at
e

th
at

th
e

tw
o

ta
sk

s
ar

e
si

m
il
ar

w
it

h
µ
ij

=
1.

S
e
c
o
n
d

r
o
w
:
T

R
A

M
’s

p
er

ce
nt

im
p
ro

ve
m

en
t

in
li
ke

li
h
oo

d
on

h
ol

d
ou

t
d
at

a
ov

er
S
T

L
,
ac

ro
ss

va
lu

es
of

↵
fo

r
va

ri
ou

s
le

ve
ls

of
tr

u
e

ta
sk

si
m

il
ar

it
y

(%
ch

an
ge

d
).

T
h
i
r
d

r
o
w
:

S
im

il
ar

it
y

b
et

w
ee

n
ta

sk
s

fo
r

th
e

t
r
u
e

n
et

w
or

ks
an

d
le

ar
n
ed

n
et

w
or

ks
fr

om
T

R
A

M
,

M
T

L
an

d
S
T

L
fo

r
8

ta
sk

s
as

m
ea

su
re

d
by

gr
ap

h
ed

it
d
is

ta
n
ce

.
W

h
it

e
sq

u
ar

es
m

ea
n

<
30

,
b
la

ck
sq

u
ar

es
m

ea
n

>
10

0.
F
o
u
r
t
h

r
o
w
:

E
d
it

d
is

ta
n
ce

(d
ow

n
is

go
od

)
of

le
ar

n
ed

n
et

w
or

ks
to

gr
ou

n
d

tr
u
th

fo
r

th
e

fo
u
r

al
go

ri
th

m
s

fo
r

2,
4,

6,
an

d
8

ta
sk

s.
B
o
t
t
o
m

r
o
w
:
S
co

re
of

le
ar

n
ed

n
et

w
or

ks
(u

p
is

go
od

)
fo

r
th

e
fo

u
r

al
go

ri
th

m
s

fo
r

2,
4,

6,
an

d
8

ta
sk

s.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 39

3.5.2 Overall Results on NetSim Data

We vary the number of di↵erences between tasks, the number of tasks, and the topol-

ogy of task-relatedness. Figure 3.5 shows a summary of the types of comparisons

made between algorithms; more detailed results follow after this general discussion.

The second row of Figure 3.5 shows the average percent improvement in likelihood

of holdout data for TRAM over STL. On the x-axis, we vary the strength parameter

↵ on a log scale. When ↵ = 0, the tasks are learned independently (the right end

of the plot). As we move across the plot to the left, the bias toward learning similar

models increases until ↵ = 1 at the left end of the plot, where all structures learned

are identical to each other. Each line in the plot corresponds to a generative process of

node re-labeling that changes the node label for the given percentage of nodes in the

network, where high percentages mean there are more di↵erences in the true networks

between tasks. As expected, the plots show that when the true networks are most

similar (8% changed), the performance gained by TRAM over STL is greatest. As

the number of true di↵erences between networks increases, biasing the models toward

each other is still a large improvement over STL, but if the strength parameter gets

too high then performance degrades.

The bottom three rows of plots in Figure 3.5 compare the performance of all

algorithms on the datasets with 32% of nodes relabeled (other results show similar

trends and are omitted for space). The row of grayscale images show the similarity

among task-specific networks as measured by graph edit distance. For example, in

the true networks for the chain topology, we see that the first task is increasingly

dissimilar to the other tasks as we look across the the top row. STL learns networks

that are highly dissimilar to each other while MTL and TRAM learn networks that

are more similar, reflecting the bias in these algorithms. TRAM is the only algorithm

that reflects the patterns of task similarity given by the true networks.

Perhaps more importantly, the bottom two rows of Figure 3.5 indicate that TRAM

learns models that are as close to ground truth as MTL and always better than

STL and AVG. We did not perform experiments on training set size because existing

Chapter 3. Prior Domain Knowledge about Task-Relatedness 40

literature has well documented that multitask algorithms are most beneficial on small

datasets (Niculescu-Mizil and Caruana, 2007). The NetSim data provides 200 samples

per task which we find is insu�cient for good single-task learning, making the data a

good candidate for multitask learning. We ran experiments with smaller amounts of

training data and found those results to be consistent with existing literature.

3.5.3 Detailed NetSim Results

Sensitivity curves show how the performance of the learning algorithm varies as the

parameter ↵ is varied for a given set of data. The plots in Figures 3.6 through 3.9 show

the average percent improvement in log-likelihood on holdout data (or edit distance

to ground truth) for TRAM (or MTL) over STL. On the x-axis, we vary the strength

parameter ↵ on a log scale. When ↵ = 0, the tasks are learned independently (the

right end of the plot). As we move across the plot to the left, the bias toward learning

similar models increases until ↵ = 1 at the left end of the plot, where all structures

learned are identical to each other. Each line in the plot corresponds to a particular

setting of d, where high values for d mean there are more di↵erences in the true

networks between tasks. All NetSim data is for networks with 50 variables and 200

samples per task.

The learned networks should reflect the amount of similarity that was assumed

through the given task-relatedness metric. By looking at results in Figure 3.10, MTL

clearly overly-constrains the learned networks to be similar even when they should

not be. MTL produces networks that are always more similar to each other than they

actually are, while STL often produces networks that are more di↵erent than they

should be. TRAM produces relatively similar networks, even when there should be

more di↵erences, yet it allows for more variation in the number of di↵erences than

either MTL or STL provide.

The TRAM, MTL and AVG algorithms are directly compared to each other in

terms of edit-distance to ground truth and fit to validation data. Figure 3.11 shows

the edit distance results. Figure 3.12 shows the fit to validation data.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 41

to
p
ol
og
y

Fr
id

ay
, O

ct
ob

er
 1

4,
 1

1

Fr
id

ay
, O

ct
ob

er
 1

4,
 1

1

chain tree cube flat

8
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

d=2
d=4
d=8
d=16

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

6
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

4
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

2
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

Figure 3.6: TRAM sensitivity curves as fit to holdout data: TRAM’s percent im-
provement in log-likelihood on holdout data over STL, for various values of ↵. The top
row (topology) shows our generated task-relatedness topologies. Each square node in the
topology graph represents a task. The square itself is an image of the adjacency matrix of
the ground truth network where dots in the images represent directed edges in the ground
truth network. The lines between nodes in the task-relatedness topology indicate that the
two tasks are similar with µij = 1.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 42

chain tree cube flat
8
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)
%

 im
pr

ov
em

en
t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

d=2
d=4
d=8
d=16

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

6
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)
%

 im
pr

ov
em

en
t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

4
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)
%

 im
pr

ov
em

en
t

2
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

Figure 3.7: TRAM sensitivity curves as edit distance: TRAM’s percent improvement
(up is good) in edit-distance to ground truth over STL, for various values of ↵. On the x-
axis, we vary the strength parameter ↵ on a log scale. When ↵ = 0, the tasks are learned
independently (the right end of the plot). As we move across the plot to the left, the bias
toward learning similar models increases until ↵ = 1 at the left end of the plot, where
all structures learned are identical to each other. Each line in the plot corresponds to a
particular setting of d, where high values for d mean there are more di↵erences in the true
networks between tasks.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 43

chain tree cube flat
8
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

d=2
d=4
d=8
d=16

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

6
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

4
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

2
ta
sk
s

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 00

0.5

1

1.5

2

log(1−α)

%
 im

pr
ov

em
en

t

Figure 3.8: MTL sensitivity curves as fit to holdout data: MTL’s percent improve-
ment (up is good) in log-likelihood on a large test set over STL, for various values of ↵.
On the x-axis, we vary the strength parameter ↵ on a log scale. When ↵ = 0, the tasks are
learned independently (the right end of the plot). As we move across the plot to the left,
the bias toward learning similar models increases until ↵ = 1 at the left end of the plot,
where all structures learned are identical to each other. Each line in the plot corresponds
to a particular setting of d, where high values for d mean there are more di↵erences in the
true networks between tasks. Notice that these sensitivity curves look much more similar
across the topologies of task-relatedness than do the same curves for TRAM.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 44

chain tree cube flat
8
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

d=2
d=4
d=8
d=16

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

6
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

4
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

2
ta
sk
s

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

log(0) −20 −15 −10 −5 0−10

0

10

20

30

log(1−α)

%
 im

pr
ov

em
en

t

Figure 3.9: MTL sensitivy curves as edit distance: MTL’s percent improvement (up
is good) in edit-distance to ground truth over STL, for various values of ↵. On the x-
axis, we vary the strength parameter ↵ on a log scale. When ↵ = 0, the tasks are learned
independently (the right end of the plot). As we move across the plot to the left, the bias
toward learning similar models increases until ↵ = 1 at the left end of the plot, where
all structures learned are identical to each other. Each line in the plot corresponds to a
particular setting of d, where high values for d mean there are more di↵erences in the true
networks between tasks. Notice that these sensitivity curves look much more similar across
the topologies of task-relatedness than do the same curves for TRAM.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 45

chain tree cube flat

d
=

16
d
=

8
d
=

4
d
=

2

chain tree cube flat

d
=

16
d
=

8
d
=

4
d
=

2
ground truth TRAM

chain tree cube flat

d
=

16
d
=

8
d
=

4
d
=

2

chain tree cube flat

d
=

16
d
=

8
d
=

4
d
=

2

MTL STL

Figure 3.10: Network similarity. Top left: Ground truth of NetSim data task-relatedness.
A dark blue square at position (i,j) indicates that there are no di↵erences in the true network
structures between task i and task j. Red squares indicate 130 edges are di↵erent between
the two tasks (all heatmaps use the same color scale). The other quadrant of the table show
similarity among learned networks for TRAM, STL and MTL.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 46

chain tree cube flat

d
=

16

2 4 6 840

50

60

70

80

number of tasks

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

d
=

8

2 4 6 840

50

60

70

80

number of tasks

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

d
=

4

2 4 6 840

50

60

70

80

number of tasks

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

d
=

2

2 4 6 840

50

60

70

80

number of tasks

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

2 4 6 840

50

60

70

80

Ed
it

di
st

an
ce

TRAM
MTL
STL
AVG

Figure 3.11: Edit distance to ground truth for TRAM, MTL, STL, and AVG averaged over
10 folds. Down is good.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 47

chain tree cube flat

d
=

16

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

d
=

8

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

d
=

4

2 4 6 8

−36.5

−36

−35.5

number of tasks

lo
g

lik
el

ih
oo

d

2 4 6 8

−36.5

−36

−35.5

number of tasks

lo
g

lik
el

ih
oo

d

2 4 6 8

−36.5

−36

−35.5

number of tasks

lo
g

lik
el

ih
oo

d

2 4 6 8

−36.5

−36

−35.5

number of tasks

lo
g

lik
el

ih
oo

d

TRAM
MTL
STL
AVG

d
=

2

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

TRAM
MTL
AVG

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

TRAM
MTL
AVG

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

TRAM
MTL
AVG

2 4 6 8−36.2

−36

−35.8

−35.6

−35.4

−35.2

Number of tasks

Lo
g

lik
el

ih
oo

d

TRAM
MTL
AVG

Figure 3.12: Log likelihood on a large test set for TRAM, MTL and AVG, averaged over
10 folds. Up is good.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 48

3.6 Networks Learned from fMRI

Functional MRI measures the activation level of voxels in the brain. Typically, hun-

dreds of such images are collected over the period of time that a subject is in the

scanner. We use data from a large schizophrenia study, where 384 volumes are sam-

pled per subject. Voxels are mapped into 150 regions of interest (ROIs) based on the

Talaraich atlas (Lancaster et al., 2000). The fMRI data for each ROI in each subject

is independently detrended and discretized into four levels of activity. Thus, our data

is 150 variables by 384 samples per subject. We use the same algorithms as with

NetSim.

3.6.1 Age-Groups as Tasks

A fundamental question for multitask learning in practice is — how do we define

a task? While we cannot fully answer the question in this chapter, we do explore

how the number of tasks for a fixed dataset a↵ect the performance of the learned

models. We experiment with dividing our dataset into various numbers of tasks by

grouping subjects into tasks by age. We take 86 subjects from our dataset (the control

subjects in the schizophrenia study) and group them based on the age of the subject.

Figure 3.13 shows how we create four di↵erent learning problems by dividing the

dataset into 2, 4, 8, and 16 tasks. The training data is the same across these problems,

but the number of tasks is di↵erent. We define the task-relatedness values µij =

e�(āi�āj)2/(2�2) where āi is the average age of subjects in task i and �2 is the variance

of ages of all subjects. As an example, µ1j = [1, .89, .67, .37, .18, .09, .03, .005] for the

youngest group (task 1) versus tasks j in order of increasing age for 8 tasks. In the

discussion of results, this task-relatedness metric is used for the TRAM algorithm.

For comparison, we also try binary-valued µ with µij = 1 for pairs of tasks i, j that

are adjacent to each other in age-order and 0 otherwise. We refer to this variation on

the task-relatedness metric as TRAMbin in the following discussion of results.

Results from the age data are shown in Figures 3.15 and 3.14. Plots 3.15(b) and

3.15(c) show TRAMbin and TRAM’s sensitivity to the strength parameter ↵ as mea-

Chapter 3. Prior Domain Knowledge about Task-Relatedness 49

20 30 40 50 600
5

age

su
bs

0
40

0
30

0
20

0
10

Figure 3.13: Age groups. Bins of subjects grouped by age for 2, 4, 6, and 16 tasks. Each
box is a task; the width shows the age range and the height shows the number of subjects
in the task. The bottom row is a histogram of all subjects.

8
ta
sk
s

16
ta
sk
s

TRAMbin TRAM MTL STL

Figure 3.14: Age data task similarity. Edit distance between learned task-specific net-
works. White is <100, black is >300.

sured by the improvement in likelihood on test data versus STL. We see that both

are an improvement over STL but TRAMbin appears less sensitive to ↵. AVG (the

left edge of the plot at log(0)) actually causes negative transfer that is increasingly

bad as the number of tasks grows. Therefore, some biasing of models helps, but too

much degrades performance.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 50

2 4 8 160

2

4

6x 10−46

number of tasks

da
ta

 li
ke

lih
oo

d

TRAMbin
TRAM
MTL
STL
AVG

(a) All algorithms

log(0) −20 −15 −10 −5 0−60

−40

−20

0

20

40

log(1 − α)

%
 im

pr
ov

em
en

t

2 tasks
4 tasks
8 tasks
16 tasks

(b) TRAMbin

log(0) −20 −15 −10 −5 0−60

−40

−20

0

20

40

log(1 − α)

%
 im

pr
ov

em
en

t

2 tasks
4 tasks
8 tasks
16 tasks

(c) TRAM

Figure 3.15: Age data. (a) Likelihood of holdout data. All di↵erences between algorithms
are significant at p=.05 except for between TRAM, TRAMbin and MTL at 2 and 4 tasks.
(b) TRAMbin’s increase in performance over STL. (c) TRAM’s increase in performance
over STL.

Figure 3.15(a) shows the overall comparison between algorithms of data likelihood

on test data. Here, the strength parameters of TRAMbin, TRAM and MTL have been

tuned on 10% of the training data. We see that splitting the dataset into more tasks

improves the performance of all algorithms, even though the underlying dataset is

the same. TRAMbin is always the highest performing algorithm, with TRAM and

MTL close behind. The lines appear quite close, but the di↵erences are significant

everywhere except between TRAMbin, TRAM and MTL for 2 and 4 tasks according

to paired t-tests at p=0.05. The improvement in performance of AVG is somewhat

surprising because tasks share the same structure. However, recall that the parameters

of di↵erent tasks are independent, therefore splitting data into tasks also allows AVG

to fit parameters to specific tasks.

Interestingly, TRAMbin and TRAM find quite a few network edges that are di↵er-

ent for the oldest age group than for the others (see Figure 3.14). All algorithms find

more di↵erences from the oldest group to the others, but for TRAM and TRAMbin

many of these edges exist with high robustness in the oldest group, but none of the

others. Other edges exist with high robustness in the younger groups but never in the

oldest group.

Chapter 3. Prior Domain Knowledge about Task-Relatedness 51

Table 3.1: Patient type. Mean log-likelihood of holdout data. Bold indicates the best
score, * indicates that the score is significant by t-test at p=.05.

task # subs TRAM MTL STL AVG

1 chronic control 86 -108.59* -108.67 -108.75 -108.84
2 followup control 15 -112.78 -112.80 -113.22 -111.92*
3 1st episode control 32 -110.39 -110.33 -110.63 -110.14*
4 1st episode 14 -114.67 -114.62 -114.94 -113.78*
5 followup 15 -110.64 -110.66 -111.17 -109.94

6 chronic 74 -111.02 -111.09 -111.37 -111.13

aggregate -111.35 -111.36 -111.68 -110.96*

Control -
Followup

Control -
1st

Episode

Control -
Chronic

Schizo -
1st

Episode

Schizo -
Chronic

Schizo -
Followup

Figure 3.16: Patient type. Metric of task-relatedness. Edges between tasks represent
µ = 1.

3.6.2 Stages of Schizophrenia as Tasks

We divide the subjects from the schizophrenia study into six tasks based on the degree

of the disease of the patients, a clinical variable that can take on one of three values:

first episode baseline, first episode followup, or chronic in increasing order of length

of time with the disease. Each group of patients has a corresponding group of control

subjects (see Table 3.1). Our task-relatedness metric assumes that all of the tasks

with control subjects are similar to each other, and the other tasks are related in

increasing order of length of time with the disease, as shown in Figure 3.16. A 10-fold

cross validation of held-out subjects in each task is performed. In this data set, we

hold out the full set of samples from individual subjects. This evaluation tells us how

well the learned model for each task fits a population of subjects represented by the

corresponding task.

Results in Table 3.1 indicate that sharing information among tasks improves the

Chapter 3. Prior Domain Knowledge about Task-Relatedness 52

TRAM MTL STL

Figure 3.17: Patient type. Learned similarity among networks for TRAM, MTL and STL.
A dark blue square at position (i,j) indicates that there are no di↵erences in the network
structures between task i and task j. Dark red squares indicate 300 edges are di↵erent
between the two tasks.

fit to holdout data, to the point that learning identical structure for all tasks (AVG)

performs the best on 3 of 6 tasks. However, learning identical structures would give

no insight to the end-user about changes in the brain functional network of patients

with schizophrenia. TRAM performs second-best in terms of fitting the data and

still allows for some di↵erences between tasks. Figure 3.17 shows that TRAM learns

far fewer di↵erences between pairs of tasks than either MTL or STL. With fewer

di↵erences, it is easier to make comparisons between networks.

3.6.3 Tasks Defined by Medication Type

Often we want to look at populations of subjects with a certain type of mental illness,

but we expect that di↵erent drug treatments will have an e↵ect on brain activity. To

address this, we divide the subjects from the schizophrenia study into seven tasks. One

of the tasks is the group of control subjects. The other tasks are schizophrenic patients

divided into six groups representing the medication they are taking (Figure 3.18).

Figure 3.19 shows improvement in data likelihood versus STL. The improvement

is greater for TRAM than MTL. AVG always performs worst of all of the algorithms.

As expected, the improvement of TRAM over STL is greatest when there is the

least data (Figure 3.19(b)). All algorithms learn networks that show high variation

between the control group and all other tasks (see Figure 3.20). The networks learned

by TRAM in particular show that networks for subjects on Clozapine type drugs are

Chapter 3. Prior Domain Knowledge about Task-Relatedness 53

Control
(86 subjects)

Unmedicated
(12 subjects)

Typical
(8 subjects)

Atypical
(39 subjects)

Clozapine
(9 subjects)

Typical &
Atypical

(3 subjects)

Clozapine &
Atypical

(3 subjects)

Figure 3.18: Task relatedness for Drug data. Each square is a task, edges between
tasks represent µ = 1.

log(0) −20 −15 −10 −5 0−60

−40

−20

0

20

40

log(1 − α)

%
 im

pr
ov

em
en

t

TRAM
MTL

(a) Sensitivity curve

0

20

40

%
 im

pr
ov

em
en

t

Overall

Typ+Atyp

Cloz+Atyp
Typica

l

Clozapine
Unmed

Atyp
ica

l

Contro
l

TRAM
MTL

(b) Per-task improvement

Figure 3.19: Drug dataset results. (a) Increase in performance over STL across values of
the strength parameter for TRAM and MTL. (b) Improvement over STL for tuned TRAM
and MTL. Note tasks are ordered by increasing number of subjects.

most similar to those on drug combinations including Clozapine than they are to any

other group. On the other hand, for subjects on Typical type drugs TRAM learns

brain networks that are highly similar to all other groups.

3.7 Discussion

Task-relatedness knowledge can improve both the robustness of learned networks and

address human objectives. A natural question is how to define the task-relatedness

metric µ. Previous application specific algorithms employed binary task-relatedness

weights. Our experiments support the intuition that binary weights that give the

topology of tasks that are directly related is preferable to fine-tuning real-valued

Chapter 3. Prior Domain Knowledge about Task-Relatedness 54

TRAM MTL STL

Figure 3.20: Drug dataset results. Learned similarity among networks for TRAM, MTL
and STL. A dark blue square at position (i,j) indicates that there are no di↵erences in
the network structures between task i and task j. Dark red squares indicate 300 edges are
di↵erent between the two tasks.

weights. A similar question is how fragile algorithms become when domain knowledge

is poor. In practice, we found that using a misleading µ causes TRAM to produce

results equivalent to MTL, which is not surprising because MTL is a case of TRAM

with a fixed µ. Theoretical definitions of good task-relatedness knowledge would be

interesting future work.

Another important direction of research is to estimate task-relatedness from data.

However, the data-driven approach answers a di↵erent question than addressed in this

chapter. TRAM is explicitly incorporating a human-specified objective that cannot be

ascertained directly from data. This concept of incorporating human preferences into

learning objectives is an active research trajectory in unsupervised learning (Chang et

al., 2009; Dasgupta and Ng, 2009). In these problems data-driven measures of good-

ness of the learned model are insu�cient and can only be addressed by incorporating

human objectives. This chapter introduced the concept of human-specified objectives

to multitask network structure learning.

Learning a large number of Bayesian network tasks e�ciently is also important,

though not explicitly addressed in this chapter. Currently, no multitask Bayesian

network learning algorithm adequately addresses this. Task-relatedness knowledge

may be useful to break up the problem into manageable-sized chunks. It would also

be interesting to investigate transferring bias among only the parts of the Bayesian

network model that we are most interested in and allow a more e�cient independent

Chapter 3. Prior Domain Knowledge about Task-Relatedness 55

search for other parts of the model.

3.8 Conclusion

Naive assumptions about task-relatedness limit the e↵ectiveness of multitask learn-

ing algorithms. Relaxing these assumptions in the objective function through a task-

relatedness metric is a necessary step in improving the performance of multitask

network structure learning algorithms. This chapter introduces a general framework,

TRAM, for incorporating domain knowledge into multitask network structure learn-

ing objectives. This framework allows a natural and flexible way to represent domain

knowledge. Specifically, we develop a novel multitask Bayesian network structure

learning algorithm with TRAM. Empirical evaluation shows that leveraging domain

knowledge produces models that are both robust and reflect a domain expert’s ob-

jective.

56

Chapter 4

Bayesian Discovery of Multiple

Bayesian Networks

Transfer learning improves the robustness of learned networks by leveraging data

from related tasks, as the previous chapter shows. Existing transfer learning algo-

rithms for Bayesian network structure learning give a single maximum a posteriori

estimate of network models. Yet, many other models may be equally likely, and so a

more informative result is provided by Bayesian structure discovery. Bayesian struc-

ture discovery algorithms estimate posterior probabilities of structural features, such

as edges. This chapter presents transfer learning for Bayesian structure discovery;

providing a more comprehensive view of the many possible solutions to the problem

of identifying the shared and unique structural features among related tasks. E�cient

computation requires that the transfer learning objective factors into local calcula-

tions, which we prove theoretically. Empirical results on benchmark data demonstrate

that compared to single-task learning, transfer learning is better able to positively

identify true edges.

4.1 Motivation

The multitask Bayesian network learning algorithms presented in the previous chap-

ter have two major limitations: 1) they use heuristic search over the space of sets

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 57

0

0.05

0.1

0.15

0.2

P(
G
)

G
(a)

0

0.05

0.1

0.15

0.2

P(
G
)

G
(b)

Figure 4.1: Example posterior distributions estimated from sample data generated by
two di↵erent 3-node Bayesian networks.

of graphs; and 2) produce a single point maximum a posteriori model. Yet, there

may be many other solutions of similar likelihood and therefore a point solution

will not give a full picture of likely relationships among variables. For example Fig-

ure 4.1 shows the posterior likelihood of networks from sample data generated by

two di↵erent Bayesian networks. In both cases, there is not just one likely network

that dominates the posterior likelihood, and so di↵erent solutions made up of various

combinations of conditional dependencies could be nearly equally likely. In terms of

learning multiple biological networks, the danger in learning only a single represen-

tative network for each task, is that it gives no hint to the domain expert that other

dependencies may indeed be highly likely. Therefore, we would like to learn a pos-

terior distribution over solutions and extract meaningful summary statistics, such as

the expectation of a particular edge (dependency). Such algorithms exist for learn-

ing individual Bayesian networks and are referred to as network discovery (Friedman

and Koller, 2003; Koivisto, 2006). The focus of this chapter is on extending these

algorithms for transfer learning of multiple networks.

Extending Bayesian network discovery algorithms for transfer learning is not a

trival problem. Algorithms for estimating the posterior probability distribution for a

single network generally fall into two categories: those that search over structure space

and those that search over order space. Structure-space algorithms make small local

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 58

changes to the learned graph structure (typically, the addition, removal or reversal

of a single edge). For these small changes, updating the likelihood of the graph, and

therefore the posterior distribution, is fast but covering the full space of structures can

be slow and can get stuck in local maxima (Grzegorczyk and Husmeier, 2008; Madi-

gan, York, and Allard, 1995). Extending those structure-search algorithms to multiple

tasks would explode the model search space exponentially, exacerbating convergence

issues. On the other hand, order-search algorithms exploit the tractability of calculat-

ing posteriors given a fixed ordering of the variables (described in more detail later).

Node order dictates which nodes are allowed to be parents to any given node, and

therefore changes in node order are more global than structure-space changes. There

are relatively e�cient algorithms for calculating exact posteriors of structural features

(Koivisto and Sood, 2004; Parviainen and Koivisto, 2009) or approximate posteriors

(Friedman and Koller, 2003; Niinimaki, Parviainen, and Koivisto, 2011) that have

been shown to be faster than structure-search. However, there is no structural prior

provided in these order-space formulations; instead there is a prior over orders. We do

not want to impose transfer at the level of orders, but rather at the level of structures

(a particular edge appearing in one task will be preferred in other tasks).

Our main challenge, therefore, is to incorporate a structural bias term into the

order-search formulation. With such a bias term, we can impose a transfer bias to

learn more robust networks, while leveraging the most e�cient Bayesian discovery

algorithms that currently exist. Our major contribution is e�ciently incorporating a

structural bias into the order-conditioned network discovery formulation. We prove

that our transfer formulation factors into local calculations. Thus, we provide the

first transfer algorithm that can calculate exact posteriors for multiple networks of

moderate size. We are also the first to show how transfer can incorporated into state-

of-the-art order-search approximation algorithms for larger networks.

Our contribution is a proof that structure bias can be e�ciently incorporated into

order-conditioned Bayesian structure discovery: a necessary requirement for using the

e�cient algorithms of network discovery (Friedman and Koller, 2003; Koivisto and

Sood, 2004). This is a finding that can impact many structure discovery problems.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 59

We give a specific formulation of multitask Bayesian network discovery that uses the

structure bias to transfer information among tasks. We further show that we can take

a Bayesian approach to average over all possible settings of the transfer parameter

rather than needing to select this parameter. Empirical results on networks, of size

8 variables and 37 variables, indicate that our transfer approach learns posterior

probabilities that are closer to the optimal values than single-task learning algorithms.

4.2 Related Work

Network structure discovery in the face of limited data is an extensively studied

problem. With limited data, the posterior probability of even the optimal network

may be quite small; however, Friedman and Koller (2003) show that the marginal

posterior probabilities over subgraphs or structural features can be quite high given

the same data. They propose the order-MCMC algorithm for estimating such pos-

terior probabilities. Koivisto and Sood (2004) give a dynamic programming method

for calculating exact posterior probabilities of network features conditioned on or-

ders. Further improvements are made to make the approach more memory e�cient

(Parviainen and Koivisto, 2009) and to produce partial-order MCMC (Niinimaki,

Parviainen, and Koivisto, 2011). We show how to extend these single-task learning

approaches to the transfer learning problem.

Starting from existing multitask algorithms (Niculescu-Mizil and Caruana, 2007;

Oyen and Lane, 2012), we derive an inductive bias toward similar structures among

related tasks. However, the solutions to the multitask problems in these papers and

the previous chapter are found through heuristic search, producing a point estimate

rather than a posterior distribution, which we desire. They also require a parameter

that determines the strength of transfer bias.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 60

4.3 Preliminaries

First, we introduce background information about Bayesian structure discovery for

learning a single task and then describe maximum a posteriori (MAP) multitask

Bayesian network objectives. We combine ideas from both of these approaches to

produce Bayesian structure discovery of multitask Bayesian networks.

Bayesian networks compactly describe joint probability distributions by encoding

conditional independencies in multivariate data. A Bayesian network B = {G, ✓} de-

scribes a joint probability distribution over n random variables X = [X1, X2, . . . , Xn]

where G is a directed acyclic graph (DAG) and the conditional probability dis-

tributions are parameterized by ✓ (Heckerman, Geiger, and Chickering, 1995). An

edge (Xi, Xj) in G means that the child Xj is conditionally independent of all non-

descendants given its parent Xi. The structure of the network, G, is of particular

interest in many domains as it is easy to interpret and gives valuable information

about the interaction of variables.

4.3.1 Structural Feature Discovery

Given a limited amount of data, the posterior probability of any network may be quite

small. However, summary statistics regarding structural features of networks may

have high posterior even with limited data (Friedman and Koller, 2003). Structural

features (such as an edge) can be described by an indicator function f such that for

f(G) = 1 the feature exists in graph G, otherwise f(G) = 0. The posterior probability

of the feature is equivalent to the expectation of its indicator,

P (f |D) =
X

G

P (G|D)f(G) . (4.1)

However, this sum can be intractable, as the number of DAGs is super-exponential

in the number of variables.

An important insight to making this sum tractable is that we could fix the or-

der of the variables. An order, �, is a permutation on the indices of the variables

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 61

X�(1), X�(2), . . . , X�(n) such that parents must precede children in the order, i.e. Xj

cannot be a parent of Xi if �(j) � �(i). Given an order, learning optimal parents

for each child factors into local calculations, and summing over DAGs consistent with

the order is tractable (Buntine, 1991; Cooper and Herskovits, 1992). Friedman and

Koller (2003) condition on a node order, and then obtain the unconditional posterior

by summing over orders:

P (f |D) =
1

P (D)

X

�
P (�)

X

G✓�
P (D|G)P (G|�)f(G) . (4.2)

Note that these two formulations for P (f |D) in Equations 4.1 and 4.2 are not the

same, as most DAGs, G, will be consistent with multiple orders, �. Typically, this

formulation produces an acceptable bias in favor of simpler structures.

Koivisto and Sood (2004) give an e�cient method for calculating the sum in

Equation 4.2. The approach is rather involved, so we summarize only the key points

here. They make several reasonable assumptions, then break the calculation into

three steps. First, we describe the modularity assumptions. Modularity refers to the

property of network calculations to depend only on local information, rather than

global information about the whole network. The modularity assumptions are:

1. Parameter modularity: Modularity of the Bayesian network parameters must

hold, P (✓|G) =
Qn

i=1 P (✓i,⇡i |⇡i) and P (X = x|G) =
Qn

i=1 P (xi|x⇡i , ✓i,⇡i).

2. Structure prior modularity: The network model prior must be modular so

that P (G,�) = c
Qn

i=1 P (Ui)P (⇡(Xi)), where Ui is the set of variables preceding

Xi in the order� (potential parents of Xi) and c is a normalization constant.

3. Feature modularity: The features must be modular, f(G) =
Qn

i=1 fi(⇡(Xi))

where ⇡(Xi) is the parent set of variable i.

The most common feature to look for is a directed edge u ! v s.t. f = 1 if Xu 2
⇡v, which is clearly modular. If these modularity assumptions hold, then the likelihood

over order space factors into local calculations as shown in Equation 4.3 (Koivisto

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 62

and Sood, 2004).

P (f,D|�) =
nY

i=1

X

⇡i✓Ui

P (⇡i|Ui)P (xi|⇡i)fi(⇡i)

P (f |D) =
1

P (D)

X

�
P (�)P (f,D|�)

(4.3)

where ⇡i = ⇡(Xi) is the parent set of variable i. The unconditional posterior for the

features is obtained by summing over orders, using the following steps:

1. Calculate family scores: �i(⇡i) = P (⇡i)P (xi|⇡i)fi(⇡i) for each node i and po-

tential set of parents ⇡i. The computational complexity of each of these is some

function C(m) of the number of samples m. The maximum number of parents

allowed for any node is typically fixed to a small natural number, r. There-

fore, there are O(N r+1) of these functions to calculate for a total complexity of

O(N r+1C(m)).

2. Calculate local contribution of each subset U ✓ V � {i} of potential parents of

i: ↵i(U) =
P

⇡i✓U P (⇡i)P (xi|⇡i)fi(⇡i). Using a truncated fast Möbius transform

and pre-computed �’s, all of the ↵ functions are computed in O(n2n) time.

3. Sum over the subset lattice of the various Ui to obtain the sum over orders �.

Using dynamic programming, this sum takes time O(n2n).

The total computational complexity for a single task is O(n2n+nr+1C(m)). This is the

exact calculation of the posterior. For large networks, roughly n > 30, the exponential

term is intractable. In these cases, MCMC simulations give an approximation to the

posterior probability, so that P (f |D) ⇡ 1
T

PT
t=1 P (�t)P (f |D,�t) for�t sampled from

order space (Friedman and Koller, 2003) or partial orders (Niinimaki, Parviainen, and

Koivisto, 2011).

4.3.2 Multitask Bayesian Networks

As demonstrated in the previous chapter, multitask Bayesian network learning lever-

ages knowledge among a set of related tasks by applying a bias toward learning similar

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 63

networks among the tasks. The underlying assumption is that much of the network is

shared among tasks, yet a few di↵erences may exist. We have already shown that by

leveraging information among tasks, we can learn more robust networks than would

be possible from a single small sample (Niculescu-Mizil and Caruana, 2007). We will

apply a similar bias mechanism for network discovery. First we describe the objective

function of existing MAP estimate algorithms, which has been shown to be e↵ective

at leveraging information. In this chapter, local calculations on a per-variable basis

will be calculated. To distinguish indices over variables from indices over tasks, we

will always index variables with a subscript and index tasks with a superscript. A set

of tasks with datasets D(k) and networks G(k) for k 2 {1, . . . , K} can be learned by

optimizing:

P (G|D) = P (G(1), . . . , G(K)|D(1), . . . , D(K)) =

P (D(1), . . . , D(K)|G(1), . . . , G(K))
P (G)
P (D)

.
(4.4)

In existing multitask network learning formulations, the joint structure prior, P (G),
is used to encode a bias toward similar structures by penalizing di↵erences in network

structure among tasks (Niculescu-Mizil and Caruana, 2007; Oyen and Lane, 2012).

We can assume that P (D(k)|G(k)) is independent of all other G(i) so Equation 4.4

simplifies and the joint prior over structures can be described by pairwise sharing of

information among tasks as in Equation 4.5.

PMTL(G|D,�) =
P (G|�)
P (D)

KY

k=1

P (D(k)|G(k))

P (G|�) = 1

Z

KY

k=1

P (G(k))
k�1Y

i=1

�(1 � �)�(G(k),G(i))

(4.5)

where Z is a normalization constant and � is any graph distance metric, such as edit

distance, that measures the number of structural di↵erences between graphs G(k) and

G(i). Note that in this chapter, we are using the standard MTL transfer formulation

rather than incorporating domain knowledge via the TRAM formulation. The TRAM

framework is general enough that we could combine the two. Instead, in this chapter,

as is explained in Section 4.4.4, we learn the optimal degree of transfer strength

directly from the data using Bayesian model averaging.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 64

4.4 Multitask Feature Discovery

In this section, we present our novel Bayesian approach to structure discovery in

multitask Bayesian networks. The challenge is finding a way to bias structures to be

similar among tasks, like Equation 4.5, while maintaining the e�ciency of calculating

feature posteriors that factor into local calculations, like Equation 4.3. First we for-

mulate the problem, describe structural bias terms that are order-modular, provide a

Bayesian approach for handling the strength of the bias, and finally describe practical

implementation issues.

4.4.1 Problem Formulation

Instead of learning the feature posteriors from a single task-specific dataset, we have

K tasks from which we will leverage data. We define the indicator f (k) = f(G(k)).

Our goal is to learn a feature for each task P (f (k)|D(1), . . . , D(K)) 8k 2 {1, . . . , K}.
All formulations are written for a single feature (e.g. a directed edge), but calculating

them simultaneously (e.g. all edges in a network) takes the same time. To simplify

the development of the objective, we will consider, without loss of generality, the case

where K = 2.

P (f (1)|D(1), D(2)) =
X

G(1)2{G}
P (G(1)|D(1), D(2))f(G(1))

=
X

G(1)2{G}
f(G(1))

X

G(2)2{G}
P (G(1), G(2)|D(1), D(2))

=
1

P (D(1), D(2))

X

G(1)2{G}
f(G(1))P (D(1)|G(1))⇥

⇥
2

4
X

G(2)2{G}
P (D(2)|G(2))P (G(1), G(2))

3

5

By conditioning on an order, we get the following:

P (f (1), D(1), D(2)|�) =
X

G(1)✓�
f(G(1))P (D(1)|G(1))⇥

⇥
2

4
X

G(2)✓�
P (D(2)|G(2))P (G(1), G(2)|�)

3

5 .

(4.6)

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 65

This formulation imposes a transfer bias at the level of structure, P (G(1), G(2)| �),

which is more intuitive than at the level of orders. To calculate this sum e�ciently, it is

necessary to factor it into a product over local sums. We prove that this is indeed pos-

sible, for appropriately chosen structure priors. In addition to the modularity assump-

tions already stated, we impose an additional modularity assumption, which we call

Assumption 4)Transfer prior modularity: P (G(1), G(2)|�) =
Qn

i=1 P (⇡(1)
i , ⇡

(2)
i |Ui).

Examples of priors that obey this assumption are graph distance measures that count

the number of edge additions and deletions, so this is a reasonable requirement.

Theorem 1. If G(1), . . . , G(K) obey the four assumptions of modularity, then

P (f (1),D|�) =
Y

i2V

X

⇡(1)
i ✓Ui

fi(⇡
(1)
i)P (x(1)

i |⇡(1)
i)

2

64
X

⇡(2)
i ✓Ui

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)

3

75 .

Proof Sketch: Apply the chain rule and marginalize over graph structure to get Equa-

tion 4.6. Use the modularity properties on each term in the product, and notice that

the result factors into the desired form.

P (f (1),D|�) =
X

G(1)✓�
f(G(1))P (D(1)|G(1))

2

4
X

G(2)✓�
P (D(2)|G(2))P (G(1), G(2)|�)

3

5

=
X

⇡(1)
1 ✓U1

· · ·
X

⇡(1)
n ✓Un

nY

i=1

h
fi(⇡

(1)
i)P (x(1)

i |⇡(1)
i)

i
⇥

⇥

2

64
X

⇡(2)
1 ✓U1

· · ·
X

⇡(2)
n ✓Un

nY

i=1

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)

3

75

See Appendix A.1 for a detailed proof.

4.4.2 Computational Complexity

The power of Theorem 1 is the computational savings that we gain. Using the factored

posterior, we only need to change Step 1 of the order-space algorithm outlined in

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 66

Section 4.3.1, the calculation of the family scores. The transfer-biased family scores

are calculated as:

�ki(⇡i) = fi(⇡
(k)
i)P (x(k)

i |⇡(k)
i)P (⇡(k)

i , ⇡
(j)
i)

= fi(⇡
(k)
i)P (x(k)

i |⇡(k)
i) ⇥

2

64
X

j 6=k

X

⇡(j)
i ✓Ui

P (x(j)
i |⇡(j)

i)P (⇡(k)
i , ⇡

(j)
i)

3

75 .
(4.7)

There are now Knr+1 of these families to calculate and each one has a sum over

O(Knr) terms. The computational complexity increases from the single-task time of

O(nr+1C(m)) to O(K2n2r+1C(m)). Steps 2 and 3 remain unchanged with an expo-

nential complexity that can be reduced through MCMC approximation.

Even the polynomial term becomes unmanageable for networks with more than

30 or so nodes and must be approximated. We note that in many cases the family

scores P (x(j)
i |⇡(j)

i) are exponentially larger for some ⇡(j)
i ✓ Ui than others. Therefore,

we can use a simple approximation by summing over only the most likely parent sets.

While calculating the family scores, we create a set of the highest-scoring families,

called set H(k)
i for each node in each task. To populate this set, we simply include the

h parent sets that give the highest P (x(k)
i |⇡(k)

i), for some positive constant h. Then

we use the approximate structural prior:

Pi(⇡
(k)
i) ⇡

X

⇡(j)
i 2H(j)

i

P (x(j)
i |⇡(j)

i)P (⇡(k)
i , ⇡

(j)
i |Ui) .

4.4.3 Transfer via Structure Bias

Now that we know we can incorporate transfer bias, we need to select a modular bias

term that transfers knowledge among tasks. The MAP multitask algorithms use a

penalty on the number of di↵erences between tasks using a graph distance function.

In that case, the number of edges that must be added, deleted, or reversed to edit one

graph into the other is penalized. Due to our modularity constraint, our transfer bias

must be defined as a function on pairs of parent sets (⇡(k)
i , ⇡

(j)
i), rather than graphs.

The main consequence of this limitation is that features that concern the parents of

more than one child at a time (such as edge reversals) cannot be considered. We choose

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 67

to penalize the number of edge additions which breaks down into local calculations:

the number of parents present in ⇡
(k)
i that are not present in ⇡

(j)
i . In other words, the

size of the set di↵erence �ikj = |⇡(k)
i \ ⇡

(j)
i | will be biased toward small values. To

encourage the number of di↵erences to be small, we apply a penalty in the form of a

geometric distribution,

P (⇡(k)
i , ⇡

(j)
i |Ui,�) =

1

Z
(1 � �)�ikj . (4.8)

Calculation of the normalization constant, Z, requires summing over an exponential

number of possible combinations of parent sets (⇡(k)
i , ⇡

(j)
i). However, we simplify the

sum into an easily calculated closed form. We employ a shortcut by noting that

there are a finite number of values that �ikj can take and we find a closed form for

calculating the number of parent-set combinations that produce each value of �ikj.

Z =
X

⇡(k)
i ✓Ui

X

⇡(j)
i ✓Ui

(1 � �)�ikj

= (4 � �)|Ui|
(4.9)

Here we give a sketch of the derivation of Equation 4.9 (see Appendix A.2 for details).

First, we simplify the inner sum by fixing parent set ⇡
(1)
i and counting how many

parent sets ⇡(2)
i will give �ikj = 0 (⇡(2)

i can contain any parents from the set {Ui\⇡(1)
i }

but none from ⇡
(1)
i); then how many ⇡

(2)
i will give �ikj = 1 (⇡(2)

i can contain any

parents from the set {Ui \ ⇡
(1)
i } and exactly one from ⇡

(1)
i); etc, up to the maximum

of �ikj = |⇡(1)
i |. This sum turns out to be a binomial expansion, and so we can write

it in closed form. Next, we perform a similar expansion of the outer sum over parent

sets ⇡(1)
i that have size |⇡(1)

i | = 0, and |⇡(1)
i | = 1, etc up to the maximum |⇡(1)

i | = |Ui|.
This sum also turns out to be a binomial expansion and therefore can be simplified

into a closed form.

Plugging Equation 4.9 into Equation 4.8 gives the structure prior:

P (⇡(k)
i , ⇡

(j)
i |Ui,�) =

(1 � �)�ikj

(4 � �)|Ui| . (4.10)

The parameter �, 0  �  1, controls the strength of transfer bias. When � = 0, the

prior becomes uniform and therefore there is no transfer. When � = 1, the prior is

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 68

non-zero only when no edge additions occur, and therefore the only parents that are

allowed are those that are likely in the other tasks.

4.4.4 Bayesian Model Averaging

We have just introduced an additional parameter, � that must be given as an input

or estimatedom. Existing MAP algorithms cannot avoid dealing with this, and they

typically estimate � by optimizing over a held out validation set. This is computa-

tionally expensive and reduces the amount of available data for training. Rather than

selecting a fixed value for �, we perform Bayesian model averaging over all possible

values of �. This Bayesian approach is compelling as the true amount of similarity

among tasks is unknown, and the “true” value of � is only incidental to our objec-

tive of learning the structure likelihoods. Furthermore, it saves us the computation

of running the algorithm for several values of �, and we do not need to hold-out data

for tuning.

We set an uninformative uniform prior, p(�|Ui) = 1 for 0  �  1, and marginalize

over �.

P (⇡(k)
i , ⇡

(j)
i |Ui) =

Z 1

0

P (⇡(k)
i , ⇡

(j)
i |Ui,�)p(�|Ui)d�

=

Z 1

0

(1 � �)�ikj

(4 � �)|Ui| d�

= 2F1(|Ui|, 1;�ikj + 2; 1/4)

4|Ui|(�ikj + 1)

(4.11)

where 2F1 is the ordinary hypergeometric function:

2F1(|Ui|, 1;�ikj + 2; 1/4) =
1X

n=0

�(1 + n)

�(1)
· �(|Ui| + n)

�(|Ui|) · �(�ikj + 2)

�(�ikj + 2 + n)
· 1

4nn!
.

The last step in Equation 4.11 is obtained by applying an identity given by Euler

in 1748 (Bailey, 1935). If � is the beta function and 2F1 is the ordinary hypergeometric

function, then

Z 1

0

xb�1(1 � x)c�b�1(1 � zx)�adx = �(b, c � b)2F1(a, b; c; z) ,

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 69

for <(c) > <(b) > 0. We let x = �, a = |Ui|, b = 1, c = �ikj + 2, and z = 1/4. Then

the condition, �ikj + 2 > 1 > 0, holds for any �ikj � 0 which is the valid range for

�ikj. Plugging these values into the identity gives the solution to the integral as:

�(1,�ikj + 1)2F1(|Ui|, 1;�ikj + 2; 1/4) ,

which simplies to the solution given in Equation 4.11. For complete details of these

steps, see Appendix A.3.

We are only interested in calculating 2F1 for combinations of integer-values of �ikj

and |Ui| for 0  �ikj  |Ui| < n. For these values, 2F1 is convergent and e�cient

solvers exist. Thus, we can plug the result of Equation 4.11 into the equation of

Theorem 1.

Bayesian model averaging is made possible by conditioning on orders. Existing

multitask network learning algorithms that search in DAG space (Niculescu-Mizil and

Caruana, 2007; Oyen and Lane, 2012) would be required to calculate a normalization

constant like that in Equation 4.9 but with sums over all possible DAGs, and no

closed form has been found for such a sum.

4.5 Experiments

Multitask learning should be able to identify true edges and non-edges with less data

than is possible with traditional single-task learning. We compare our MTL structure

discovery algorithm against two baselines. The first baseline is single-task learning

(STL), where each network is learned independently of the other tasks. The other

baseline (POOL) takes the opposite extreme by pooling data from all tasks together

and treating it as a single task. POOL uses the strongest leveraging of data among

tasks possible and so it should perform best if the separate tasks are actually the

same distribution. For all approaches, we use the BeanDisco implementation for exact

and approximate network discovery (Niinimaki, Parviainen, and Koivisto, 2011). For

MTL, the scoring function of BeanDisco is modified as described above. For POOL,

the data are merged before applying the algorithm. The size of parent sets is also

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 70

Smoking

Bronchitis

LungCancer

VisitToAsia

Tuberculosis

Either

Dyspnoea Xray

(a) Real network used to generate data.

Smoking

Bronchitis

LungCancer

VisitToAsia

Tuberculosis

Either

Dyspnoea Xray

(b) Likely edges learned from 5000 samples
(thresholded at P (f) > 0.5)

Figure 4.2: Asia network. True edges are colored blue.

limited, as described for each dataset.

Smoking

Bronchitis

LungCancer

VisitToAsia

Tuberculosis

Either

Dyspnoea Xray

(a) Reverse of true edges are colored green

Smoking

Bronchitis

LungCancer

VisitToAsia

Tuberculosis

Either

Dyspnoea Xray

(b) Non-edges are colored red

Figure 4.3: Color coding of network edges. True edges are colored blue as in previous
figure.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 71

1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Training set size

p(
f|D

)

Figure 4.4: Posterior probability estimate for each edge in the asia network from
various large sample sets (means calculated from 20 sample sets). Blue curves are
true edges, green are reverse of a true edge, pink are non-edges.

4.5.1 Benchmark Data

Synthetic data is generated from benchmark Bayesian networks, asia which has 8 vari-

ables (Lauritzen and Spiegelhalter, 1988) and alarm which has 37 variables (Beinlich

et al., 1989). Even when the generative model is known, it is not obvious how to mea-

sure the performance of a network discovery algorithm. Figure 4.2a shows the asia

network. To give a clear picture of our objective, see the learning curve of posterior

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Training set size

p(
f|D

)

(a) STL

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Training set size

p(
f|D

)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

true shared edge
true edge
reverse edge
non−edge

(b) MTL

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Training set size

p(
f|D

)

(c) POOL

Figure 4.5: Example posterior probability estimate for each edge in a modified asia
network from various small sample sets (means calculated from 20 sample sets). Up
is good for blue and cyan curves. Down is good for red and green curves.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 72

features in Figure 4.4. The color-coding of these curves is explained in Figure 4.2a

(blue for true edges), Figure 4.3a (green for edges that are reverse of true), and Fig-

ure 4.3b (red for non-existent edges). On the small asia network we can calculate the

true posterior likelihoods of structural features given the data. Sample noise a↵ects the

true posterior likelihood of structural features but the posteriors appear to stabilize

for large training sets. Even so, one edge has been consistently identified in the reverse

direction of the true edge and another true edge represents such a subtle dependency

that it is not discernible from this amount of data (see Figure 4.2b for a picture of

the learned network). Therefore, we use the posterior estimates from large training

sets as our ground truth P ⇤(f |D). In the case of asia, P ⇤(f |D) = P̂STL(f |D5000).

We need a set of related networks and so we modify some structures of the given

benchmark network to create similar but di↵erent networks. We delete each edge with

some probability pdel and vary pdel from 0.1 to 0.5 to create sets of networks with more

or less features in common for various experiments. If an edge is deleted, the condi-

tional probability table for the child of the deleted edge is updated by marginalizing

over the deleted parent. In our experiments, the full generative model is repeated 10

times to produce 10 di↵erent sets of K networks each for a given pdel .

4.5.2 Benchmark Results

The goal of transfer learning is to accelerate the learning curve at smaller training

set sizes by leveraging data among similar tasks. If we look closely at the results

for one particular modified asia network, we can see the e↵ect of multitask learning.

Figure 4.5a shows the estimated posteriors from STL at smaller sample sizes. Even at

these small sample sizes, the posteriors of the true edges tend to be higher than those

of non-edges. However, compared to the estimates from large samples, these posteriors

exhibit high variance and many are quite far from the large-sample posterior value (in

the figure, error bars are omitted for readability). The question is whether multitask

learning can produce a steeper learning curve.

Figure 4.5b shows the learning curve achieved by MTL on the same network, us-

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 73

Table 4.1: Performance increase for asia in terms of AUC given by MTL vs STL and
MTL vs POOL. The “pair-t” columns indicate which algorithm had the largest AUC
according to a paired-t test.

Training MTL vs STL MTL vs POOL
samples % incr pair-t % incr pair-t

5 3.06 - 10.72 MTL
10 9.02 MTL 4.10 -
20 4.90 MTL 0.34 -
30 4.98 MTL 0.85 -
40 7.60 MTL 3.66 -
50 3.00 MTL 3.08 MTL
100 1.97 MTL 2.96 MTL
200 0.53 - 2.82 MTL
400 0.14 - 4.14 MTL
500 -0.03 - 3.72 MTL

ing data leveraged from one other task, where some but not all edges are in common

between the two tasks. This learning curve shows a wider gap between the estimated

values of true edges and non-edges. In that sense, the MTL learning curve is better

than STL because it is better at separating the true edges from the non-edges at

smaller training set sizes. In particular, this gain is achieved through the lower es-

timates of non-edges. In other words, non-edges are more quickly identified as such

through transfer learning than without. On the other hand, the raw estimates of true

edges tend to have such high variance (both with STL and with MTL) that it is

not possible to say that one algorithm is doing better than the other in terms of

converging on the actual P ⇤(f |D).

Figure 4.5c shows the learning curve obtained by POOL on the same modified

asia network. POOL combined the data from two modified networks with some edges

in common. The algorithm e↵ectively has twice as much data to work with as STL,

therefore the learning curves are steeper. Yet there are quite a few non-edges with

high posterior values.

To quantify these results, we measure how well the estimates for true edges sep-

arate from the estimates for non-edges. There is potentially a directed edge between

each ordered pair of nodes. We call this set of potential edges E. We quantify the

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 74

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

TP
 ra

te

MTL
STL
POOL

(a) 10 samples per task

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

TP
 ra

te

MTL
STL
POOL

(b) 50 samples per task

Figure 4.6: ROC curves for asia. Each point is the (FP rate, TP rate) aggregated over
2 tasks and 10 trials of the generative model, for a particular value of ⌧ . The arrow
indicates where STL and POOL curves cross.

ground truth using the P ⇤(f |D) values obtained from large samples and identify the

set of “true” edges E⇤ = {f 2 E | P ⇤(f |D) > 0.5}.

To di↵erentiate learned edges from learned non-edges, we assign a threshold ⌧

and call any feature an edge if its posterior is greater than the threshold, Ê = {f 2
E|P̂ (f |D) > ⌧}. By varying ⌧ , 0  ⌧  1, we can investigate the tradeo↵ between the

rates of true-positives (TP) and false-positives (FP) in Ê by constructing an ROC

curve (Figure 4.6). The TP rate is |Ê \E⇤|/|Ê|. The FP rate is |Ê \E⇤|/(|E| � |Ê|).

Figure 4.6 shows that various algorithms have di↵erent strengths along the ROC

curve. The ROC shows that the patterns indicated in Figure 4.5 are borne out more

generally; that is, STL is slowest to positively identify true edges, while POOL has

di�culty eliminating false positives. MTL achieves the greatest overall separation of

true edges and non-edges. Initially, at the left end of the ROC curve, with low false

positive rates both MTL and STL perform best, finding more true positives than

POOL. However, the performance of STL falls o↵ as the false positive rate increases:

STL is missing some true positives that both MTL and POOL are able to identify.

MTL gives us the best of both worlds, giving the best overall performance.

Area under the curve (AUC) summarizes the overall performance along the ROC

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 75

(a) STL (b) MTL (c) POOL

Figure 4.7: Learning curves: Example posterior probability estimate for each edge
in a modified alarm network from various small sample sets (means calculated from
20 sample sets). Blue curves are true edges shared by both tasks, cyan curves are
true edges unique to this task, green are reverse of a true edge, red are non-edges. Up
is good for blue and cyan curves. Down is good for red and green curves. Note that
likelihoods of non-edges are closer to zero in MTL than other algorithms, and that
POOL has the highest number of falsely identified edges.

curve. We report AUC for various amounts of training data in Table 4.1 across 30

trials of the generative model. With these small training sets, the di�culty of the

problem presented by each trial can vary quite a bit, therefore, the performance of

each algorithm is compared directly on each trial by looking at how much greater the

AUC is for MTL than the other algorithm. This increase in AUC score per trial is

then averaged over all trials to give the numbers in Table 4.1. Furthermore, a paired-t

test is performed to determine whether this increase in performance is significant at

the 95% confidence level. The winner of the paired-t test is given in Table 4.1.

Similar experiments are performed on the larger alarm network. This network is

too large for exact posterior computation, therefore we use MCMC approximation.

We set MCMC hyper-parameters as recommended by Niinimaki, Parviainen, and

Koivisto (2011); specifically, bucket size = 10, burn-in samples = 1000, sub-sample

interval = 10 and total samples = 100. We tried other values (notably more samples,

larger sub-sample interval, and longer burn-in) and found that they give nearly the

same results. We also use the transfer approximation described in Section 4.4.2, with

h = 1000. For the ground truth alarm network, we use 10,000 training samples to

estimate the true posterior of each feature, P ⇤(f |D) = P̂STL(f |D10,000).

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 76

Table 4.2: Performance increase on alarm for AUC given by MTL versus STL and
MTL versus POOL. The “pair-t” columns indicate which algorithm had the largest
AUC according to a paired-t test.

Training MTL vs STL MTL vs POOL
samples % incr pair-t % incr pair-t

25 -0.12 - 0.04 -
50 0.29 MTL 1.76 MTL
75 0.43 MTL 3.63 MTL
100 0.67 MTL 4.49 MTL
200 0.05 - 5.19 MTL
300 -0.07 - 8.68 MTL
400 -0.03 - 8.85 MTL
500 -0.46 STL 10.45 MTL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

TP
 ra

te

MTL
STL
POOL

(a) 50 samples per task

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

TP
 ra

te

MTL
STL
POOL

(b) 75 training samples per task

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

TP
 ra

te

MTL
STL
POOL

(c) 100 samples per task

Figure 4.8: Example ROC curves for alarm data. Each point represents the (FP rate,
TP rate) aggregated over 2 tasks and 10 trials of the generative model, for a particular
value of ⌧ .

The alarm network contains 37 variables, therefore there are 1,332 ordered pairs

of nodes or potential edges in the set E. Of these, only 46 are true edges. We see again

that on this dataset, MTL estimates lower posteriors for the non-edges than STL or

POOL (see Figure 4.7). The ROC curves in Figure 4.8 show that POOL routinely

identifies many false positives. The curves for MTL and STL are closer, but again

MTL is better at reducing the number of false positives. This makes di↵erentiating

the true edges from the false edges easier at small training set sizes, see Table 4.2 for

AUC results. MTL dominates STL for small training sets. MTL dominates POOL at

all training set sizes.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 77

4.6 Application to Neuroimaging

Our goal is to find functional brain networks associated with schizophrenia. We start

with functional magnetic resonance images (fMRI) data that measure the activity lev-

els in regions of interest (ROI) in the brain. The functional brain network is modeled

as a Bayesian network of information sharing (modeled by a multinomial of discretized

activity level) among ROIs. Data has been collected from 86 healthy control subjects

(controls) and 74 schizophrenia patients (patients). For each subject, there are 384

full-brain scans which are the samples in our training data. Brain images are parcel-

lated using the Talaraich atlas giving 150 ROIs. Therefore, for each subject, we have

a 150⇥ 384 data matrix. We concatenate the data from several subjects to create the

training data for each task. We apply both our MTL algorithm and the standard STL

Bayesian structure discovery algorithm. As our goal is to identify di↵erent structures

between tasks, we do not use the POOL method that learns identical structures for

both tasks.

To examine the consistency of results across various subsets of subjects for each

task, we create cross-folds of the subjects. That is, for a 20-fold cross-fold, the subjects

for a task are partitioned into 20 roughly equally-sized bins. For each fold, 19 of these

20 bins of subjects are included in the training data. The results show how well learned

models over various subsets of subjects are representative of the larger control and

patient populations.

The size of the parent sets is limited to r = 2. With this setting, the time to

calculate family scores with STL is approximately 3 hours. For MTL family score cal-

culation, we use the approximation method described in Section 4.4.2 with h =10,000.

MCMC approximation is used to estimate the posterior likelihood of edges (Niinimaki,

Parviainen, and Koivisto, 2011), with hyper-parameters bucket size = 10, burn-in

samples = 5000, sub-sample interval = 10 and total samples = 1000.

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 78

5 10 15 20 255.5

6

6.5

7

7.5x 10−3

subjects per task

m
ea

n
p(

f|D
)

(a) Non-edges

5 10 15 20 250.5

0.55

0.6

0.65

0.7

0.75

m
ea

n
p(

f|D
)

subjects per task

MTL
STL

(b) True edges

Figure 4.9: Estimated posterior of features from small subsets of subjects. Points are
perturbed horizontally for visibility.

4.6.1 Small Samples

MTL estimates significantly lower posterior likelihoods on non-edges compared to

STL. Evaluating results on real data is complicated by the fact that we do not have

ground truth of known networks. Therefore, we look at the trend of estimates on

smaller subset of the subjects and compare the results against the STL estimate from

the full set of data. Figure 4.9a shows that for edges that are not determined to

have real dependencies in the full dataset (i.e. non-edges), the posterior estimate is

significantly lower for MTL than STL. Significance was determined via a paired-t

test at the 95% confidence level over various subsets of subjects selected. Figure 4.9b

shows that there is no di↵erence between MTL and STL in terms of the posterior

estimate of true edges (according to paired-t test at 95% confidence). Therefore, MTL

is able to eliminate the non-edges with less data than STL.

These results on small samples show the estimation of non-edges is improved by

using transfer. However, on this real dataset, there is high variability on the rest of

the edges that may represent real dependencies. Neither MTL or STL is significantly

better at reducing this variability. The implication is that it is not any easier to

seperate non-edges from real edges using MTL than STL. This is a disappointing

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 79

result, particularly in light of the promising results given by the benchmark data.

One likely explanation for this discrepency between benchmark data and real data is

that there is a model mismatch problem. That is, the real data are not generated by a

joint multinomial distribution, therefore inferring multinomial parameters produces a

poor fit. This concern has been raised in discussions with domain experts. The fMRI

data begin real-valued and there has been concern about loss of information due to

discretization of the data. This issue is addressed in the next chapter, in which we

consider a continuous joint probability distribution rather than a discrete distribution.

4.7 Discussion

Our structure bias in the order-modular framework for Bayesian network structure

discovery can be applied to many other problems currently being researched. In this

paper, we demonstrate the application of structural bias to the problem of multitask

learning. We find promising results from our approach and expect that further im-

provements can be made by tailoring the bias term to the application. Additionally,

more sophisticated methods for approximating the transfer bias on large networks

could be explored.

Implementation of a structural bias in Bayesian structure discovery is critical for

solving other problems as well. Grzegorczyk and Husmeier (2008) propose incorporat-

ing prior knowledge about biological networks in the form of a structural feature bias.

Rather than using the exact calculation of posteriors that are possible when condi-

tioning on orders, they propose a new MCMC sampling method for approximation.

Their motivation is that it is inconvenient to define priors in the space of orders rather

than structure. Our Theorem 1 shows that it is indeed possible to define structural

priors at the structure level to use the e�cient algorithms that rely on conditioning

on orders.

This structural bias term could also be used to transfer knowledge about the di-

rection of Bayesian network edges from interventional experiments (Cooper and Yoo,

1999). Active learning of Bayesian network structure has been shown to significantly

Chapter 4. Bayesian Discovery of Multiple Bayesian Networks 80

speed the learning of edges, particularly for getting directionality (Tong and Koller,

2001). Multitask active learning algorithms would be useful for transferring knowl-

edge from an experiment where interventions are possible to a similar domain where

such interventions may be more expensive or impossible. Recent work proposes prin-

cipled methods for the transfer of causal relationships between domains (Pearl and

Bareinboim, 2011). The order-modular structural bias term presented here provides

a critical algorithmic mechanism to implement such transfer of knowledge.

4.8 Conclusions

This chapter introduces a Bayesian discovery algorithm for estimating multitask

Bayesian network features. This algorithm is able to successfully leverage data from

related tasks to improve the estimate of network structure features given limited

amounts of data. The primary contribution is determining that structural priors that

are order-modular can be used to impose inductive bias among tasks. By using local

structural priors, we achieve three goals simultaneously: 1) an intuitive inductive bias

at the level of structures rather than orders; 2) take advantage of the most e�cient

structure discovery algorithms; and 3) closed form Bayesian model averaging over the

transfer strength parameter. Empirical evidence suggests that multitask learning of

Bayesian networks reduces the number of spurious dependencies learned, especially

at small sample set sizes. Overall, the end result is that we are better able to learn

which network features exist in each task under the standard multitask assumption

of similarity among tasks.

81

Chapter 5

Learning Di↵erences between

Network Structures via Transfer

Domain scientists often look for di↵erences among related dependency networks, such

as for regulatory networks of di↵erent species or for diseased versus healthy popu-

lations. The previous chapters indicate that transfer learning improves the overall

fit to data of learned models, but there remains a question about the reliability of

the di↵erences learned between classes. The prevalent naive method for finding these

di↵erential dependencies is to learn individual networks independently and then com-

pare them. This chapter shows why this approach is prone to high false discovery rates

and that it provides no mechanism for controlling the quality of the identified di↵er-

ences. We then show that transfer learning identifies high-precision (high-confidence)

di↵erences and provides the domain expert with a natural “knob” for controlling the

quality of the di↵erential network analysis results.

5.1 Motivation

This chapter focusses on the problem of identifying di↵erences in dependency networks

among various classes of data. For example, we want to understand how regions of

the brain share information before and after a person acquires a particular skill. The

goal in this neuroimaging study is to identify the regions of the brain that are most

Chapter 5. Learning Di↵erences between Network Structures via Transfer 82

influential after a skill has been learned so that direct current stimulation can be

applied to those few regions to accelerate a person’s learning process (Clark et al.,

2012). In another example, biologists want to analyze how the dependency structure

of plasma proteins change between patients that have cancer and patients that do not

have cancer, with the goal of better understanding the cancer biology and identifying

improved cancer diagnostics.

Traditional methods for identifying these network structure di↵erences learn a

network for each task independently and then compare them. However, we show that

this naive approach tends to produce a large number of spurious di↵erences which

significantly limit their usefulness. Large numbers of spurious di↵erences hamper the

analysis and prevent drawing any reliable conclusions. Furthermore, spurious di↵er-

ences are usually expensive to eliminate through followup tests. We also find that

there is a need for an intuitive mechanism to control the quality of the learned dif-

ferences; in other words, to trade o↵ learning a small number of spurious di↵erences

(precision) with identifying a large number of di↵erences (recall).

This chapter demonstrates the novel use of transfer learning techniques to con-

trol the precision-recall tradeo↵ in di↵erential network analysis, and shows that these

techniques can dramatically improve the quality of the learned di↵erences. Our ap-

proach is to use transfer learning to bias the learned dependency networks for the

di↵erent tasks to be similar. The more heavily we enforce this bias, the fewer di↵er-

ences will be learned between tasks. We show that true di↵erences, those that are

well supported by the data, will tend to require a higher bias to be eliminated, while

spurious di↵erences will be eliminated even with a small bias.

There does not appear to be any existing research that investigates the use of

transfer learning for obtaining high quality di↵erences or providing a mechanism to

control the precision-recall tradeo↵ in di↵erential network analysis. In Danaher, Wang,

and Witten (2011), low recall of di↵erences learned on synthetic data is mentioned,

but not further explored. Most related to this chapter, a recent paper (Mohan et

al., 2012) explores techniques for biasing learning such that the dependency networks

di↵er in a limited number of variables. They show that if the di↵erences match their

Chapter 5. Learning Di↵erences between Network Structures via Transfer 83

assumption, then they are better able to recover the true networks. Some approaches

use bootstrap procedures to identify the most stable edges in each network before

making comparisons (Bergmann, Ihmels, and Barkai, 2004). Rather than learning a

network for each task independently, a few methods have been proposed that specif-

ically look for commonalities and di↵erences (Roy, Werner-Washburne, and Lane,

2011; Zhang et al., 2009). However, these methods do not consider controlling the

number of di↵erences learned except through computationally expensive bootstrap-

ping procedures. The transfer learning approach proposed in this chapter is far less

computationally expensive than bootstrapping procedures and gives higher precision

di↵erences.

The methods explored in this chapter introduce several improvements of practical

importance over previous chapters. In previous chapters, we assume a discrete directed

graphical model (Bayesian networks), however the results on fMRI data were not con-

sistent across validation folds. The raw data is continuous and so using a continuous

model would take advantage of that. Undirected models can be less computationally

demanding than directed models because there is no acyclicity constraint. Gaussian

graphical models have both of these advantages, and are able to scale to networks

with thousands of nodes (as opposed to about a hundred). One major disadvantage

is that the Gaussian graphical model assumes that data are produced by a multivari-

ate Gaussian, which is not accurate in fMRI data. We handle this problem by using

a non-parametric model of correlation instead of Gaussian, as detailed later in this

chapter.

In graphical lasso network structure learning, the objective function is convex and

the solution space is piecewise continuous with a discontinuity at the points where each

element of the of the precision matrix transition from zero to non-zero (Meinshausen

and Bühlmann, 2006). Like Chapter 3, graphical lasso learns a single MAP estimate

of the solution, but unlike Chapter 3, this is an exact solution rather than the result

of heuristic search. Even so, given limited data the optimal solution may change

given a di↵erent sample of data from the same distribution. This is a serious problem

when comparing two networks learned from two di↵erent (yet similar) distributions,

Chapter 5. Learning Di↵erences between Network Structures via Transfer 84

actualactual

edge no edge

TP FP

FN TNle
ar

ne
d ed

ge
no

 e
dg

e sparsity

actualactual

difference no diff

TPA & TNB
TNA & TPB
FNA & FPB
FPA & FNB

FPA & TNB
TNA & FPB
TPA & FNB
FNA & TPB

TPA & FPB
FPA & TPB
FNA & TNB
TNA & FNB

TPA & TPB
TNA & TNB
FNA & FNB
FPA & FPB

le
ar

ne
d di
ffe

re
nc

e
no

 d
iff

(a) Edges

actualactual

edge no edge

TP FP

FN TNle
ar

ne
d ed

ge
no

 e
dg

e

le
ar

ne
d di
ffe

re
nc

e
no

 d
iff

transfer

actualactual

difference no diff

TPA & TNB
TNA & TPB
FNA & FPB
FPA & FNB

FPA & TNB
TNA & FPB
TPA & FNB
FNA & TPB

TPA & FPB
FPA & TPB
FNA & TNB
TNA & FNB

TPA & TPB
TNA & TNB
FNA & FNB
FPA & FPB

Friday, February 15, 13

(b) Di↵erences

Figure 5.1: Confusion matrix of possibilities for identifying (a) edges in a single net-
work; and (b) di↵erences between two networks A and B. Note that the gray shaded
regions are situations where an edge could be identified correctly as di↵erent between
the two networks, but the direction of the di↵erence would be reverse from the truth;
or a non-di↵erence is correctly identified but for the wrong reason.

because there is no way to gauge which network di↵erences are most likely to be real

and which may be due to sample noise.

5.2 Naive Approach: Learning Independently then

Comparing

Biological data comprises hundreds or thousands of variables, but often only hundreds

of samples. The data is noisy and there may be some model mismatch. We must

assume that there will be errors when trying to learn dependency networks from data.

When the networks are learned in isolation, errors in identifying edges are likely to be

made independently, which in turn introduces spurious di↵erences between learned

networks. To illustrate this issue, we first look at the precision-recall tradeo↵ for

identifying edges in individual networks; next we look at how errors in individual

networks complicate identifying di↵erences; and then we conclude this section with a

discussion of how to control the precision-recall tradeo↵ for di↵erences.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 85

Figure 5.1a shows the possible scenarios for identifying each dependency, or edge,

in a confusion matrix. Ideally, all edges would be identified as true positives (TP) or

true negatives (TN), but we know that this is not possible given limited data and so

there will also be some false positives (FP) and false negatives (FN). Sparse network

learning algorithms, such as graphical lasso, aim to learn few edges (Meinshausen

and Bühlmann, 2006) by increasing the degree of sparsity of the learned network.

The learning algorithm has no control over the vertical line separating the actual

edges from non-edges. However, by changing the sparsity parameter, the algorithm

e↵ectively moves the boundary between the learned edges and non-edges (shown as

the horizontal line highlighted in green in Figure 5.1a). Assuming the algorithm is able

to identify edges with better than random probability, then precision (TP/(TP+FP))

will increase with sparsity; meanwhile, the recall (TP/(TP + FN)) will decrease.

It is tempting to find the ideal sparsity level before comparing the networks.

However, we find that there is no such ideal setting. We created two sets of data

generated from synthetic multivariate Gaussian networks. Each of these networks has

1,000 variables and 1,000 edges. Among those edges, the networks have about 80%

of their edges in common and about 20% di↵erent. We generate data from these

networks, then learn graphical structures and compare our learned edges within each

network to ground truth. The precision-recall tradeo↵ for identifying edges is apparent

as we adjust the strength of the sparsity penalty (see Figure 5.2a).

No matter the setting of the sparsity parameter, there will be errors, and when

errors are made independently for each dataset, there will be many fake di↵erences.

Figure 5.2b shows just how bad the precision is for identifying di↵erences in depen-

dencies between these two networks. Changing the sparsity parameter has some e↵ect

on the recall of these di↵erences, and some on the precision. However, the precision

is never better than 0.6 for di↵erences, even with larger amounts of data when the

identification of individual edges is quite confident (precision is over 0.9 for edges

alone). Figure 5.1b shows the possibilities for identifying di↵erences. Clearly, getting

edges correct in both networks is less likely than getting an edge correct in a single

network, making it even more di�cult to learn di↵erences than it is to learn indi-

Chapter 5. Learning Di↵erences between Network Structures via Transfer 86

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n

●

●

●

●

●
●●●●

●

●

●

●

●●●●●

●

●

●

●
●

●●●●

●

●

●

Number training samples
100_100�
500_500�
750_750
1000_1000�
2000_2000

(a) Edges in a single network

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

Number training samples
100_100�
500_500�
750_750
1000_1000�
2000_2000

(b) Di↵erences between two networks

Figure 5.2: Precision versus recall

vidual edges. No matter where we are on the edge precision-recall tradeo↵ for each

individually-learned network, like Figure 5.2a, we will always identify a large number

of fake di↵erences.

All is not lost! Figure 5.1 provides a clue about how to reduce the number of

di↵erences learned. To increase the precision of learned di↵erences, we need to be able

to adjust the horizontal boundary between learned di↵erences and non-di↵erences. For

learning edges in individual networks, we were able to do this through the setting of

the sparsity penalty. For learning multiple networks with few di↵erences, we need

to bias the networks to be similar to each other, which is exactly what transfer

learning does. When learning multiple networks with transfer learning, we decrease

the number of di↵erences learned by increasing the transfer strength parameter. Now

edges in both networks will tend to either be chosen together or left out together. In

essence, only the di↵erences that are strongly supported by the data will survive this

bias giving us high confidence that those edges that are identified as di↵erences are

very likely to be true di↵erences.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 87

5.3 Transfer Learning for Di↵erential Networks

Clearly, if we hope to identify high-precision di↵erences then networks cannot be

learned in isolation and then compared to each other. Networks must be inferred

together to facilitate comparison. To achieve this, we borrow a technique developed for

learning multiple networks via transfer learning, also called multitask learning (MTL)

(Chiquet, Grandvalet, and Ambroise, 2011; Danaher, Wang, and Witten, 2011; Guo

et al., 2011). Specifically, we employ an MTL graphical lasso objective function that

explicitly controls the number of di↵erences learned.

This section covers information about learning an individual network with the

Gaussian graphical lasso objective; learning non-parametric graphical lasso with the

transelliptical model; and learning multiple networks with transfer learning.

5.3.1 Gaussian Graphical Models

First, we review the key steps of the standard model for learning a single network.

Gaussian graphical models (GGMs) infer a network of conditional dependencies from

multivariate data by approximating the inverse covariance matrix with a sparse solu-

tion (Meinshausen and Bühlmann, 2006). If X is a p-dimensional Gaussian random

variable X ⇠ N (0,⌃), then ⇥ = ⌃�1 is the precision matrix. Entries in the precision

matrix are partial correlations, i.e. ✓ij is the correlation of variables Xi and Xj given

all other variables Xm, m 6= i, j. A value of ✓ij = 0 implies conditional independence

of Xi and Xj. Therefore, the precision matrix can be interpreted as an undirected

network where nodes are the variables in the precision matrix and edges connect

variables with non-zero partial correlations.

Given the dense covariance matrix, ⌃̂, estimated from the data, the learning ob-

jective for a single network is:

b⇥ = argmax
⇥�0

log det⇥ � tr(⌃̂⇥) � �k⇥k1 . (5.1)

The parameter �, 0  �  1, controls the degree of sparsity. Varying this parameter

a↵ects the precision-recall tradeo↵ of identifying dependencies. Similar to adjusting

Chapter 5. Learning Di↵erences between Network Structures via Transfer 88

the sensitivity of classification algorithm (Fawcett, 2004), it is informative to inspect

the networks inferred at various values of � to see how edges appear/disappear along

the precision-recall curve.

5.3.2 Transelliptical Graphical Models

Next, we review how transelliptical grapical models relax the Gaussian assumption

and give further details about the non-parametric that we use in place of the co-

variance matrix. We have seen that often in real data, extreme values in just a few

samples, like 1% of the data, can produce a large number of Gaussian correlations

that do not exist when those samples are not present. Transelliptical models replace

the Gaussian covariance matrix with a non-parametric correlation matrix which is far

less sensitive to extreme values (Liu, Han, and Zhang, 2012). We use the Kendall’s

tau correlation based on rank-statistics. This is a non-parametric measure of correla-

tion between pairs of variables. Let x1, . . . ,xm 2 Rd be m observations of the random

vector X. Then, for two variables, Xj and Xk, the Kendall’s tau correlation statistic

is defined as,

⌧̂jk =
2

m(m � 1)

X

1i<i0m

sign(xi
j � xi0

j)(x
i
k � xi0

k) . (5.2)

Liu, Han, and Zhang (2012) shows that the standard Gaussian covariance estimator,

⌃̂, can be estimated using a transformation on the Kendall’s tau estimator, so that

⌃̂jk = sin
⇣⇡
2
⌧̂jk

⌘
· I(j 6= k) + I(j = k) , (5.3)

where I is the indicator function.

To learn the transelliptical graphical model, we simply insert this sample corre-

lation estimator matrix, ⌃̂, into the usual graphical lasso objective function. This

simple change in estimator makes the learning significantly more robust to outliers

and non-Gaussianity, without any significant loss in accuracy even when data is truly

Gaussian (Liu, Han, and Zhang, 2012). In preliminary experiments, we verified this

finding empirically with synthetic data. Furthermore, on our real data, the large

number of spurious correlations learned with the Gaussian model made comparisons

Chapter 5. Learning Di↵erences between Network Structures via Transfer 89

between networks nearly impossible. With the same data and learning algorithm, but

with this Kendall’s tau correlation statistic, we acheived far more interpretable re-

sults. We strongly recommend using this non-parametric model whenever analyzing

real data.

5.3.3 Joint Graphical Models with Transfer

To learn multiple graphical models from multiple sets of data, we use the joint graph-

ical lasso algorithm which incorporates a transfer bias term to encourage the learned

networks to be similar (Danaher, Wang, and Witten, 2011). If we have K classes of

data, we will estimate ⌃̂k, k 2 {1, . . . , K}, for each set of data and learn a sparse

precision matrix, b⇥k, for each class of data.

max
⇥k�0,8k

KX

k=1

h
log det⇥k � tr(⌃̂k⇥k)

i
� �1(1 � �2)

X

i,j,k

|✓kij| � �1�2

X

i 6=j

X

k

(✓kij)
2 (5.4)

The parameter �1 controls the degree of sparsity in much the same way as the �

parameter in the single task case. There is also a parameter �2, 0  �2  1, that

controls the number of di↵erences learned among the tasks. When �2 = 0, the objec-

tive is the same as several independent single-task learning problems. When �2 = 1,

the structures learned are identical. Therefore, this parameter can be used to limit

the number of di↵erences learned. More importantly, the only di↵erences that will

survive this penalty term are those that are highly supported by the data.

5.4 Experiments with Synthetic Data

We use synthetic networks and data to test whether our approach correctly identifies

true di↵erences between related networks. To create a synthetic dataset, we generate

a network with 1,000 Gaussian variables and 1,000 undirected edges. Then, the end-

point of each edge is re-wired with some probability to a di↵erent node, creating a

di↵erent network with edges in common with the first one. The values for the par-

tial correlations associated with each edge are drawn independently from a normal

Chapter 5. Learning Di↵erences between Network Structures via Transfer 90

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

Number training samples
100_100�
500_500�
750_750
1000_1000�
1500_1500�
2000_2000

(a) Precision for various amounts of training
data.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
Lambda_1 (sparsity)

0.1
0.2
0.3

0.4
0.5
0.6
0.7

(b) Precision for various �1.

Figure 5.3: Precision versus recall of learned di↵erences, on synthetic networks.

distribution, then scaled to ensure the positive semi-definiteness of the partial corre-

lation matrix ⇥. Data are generated by drawing 500 samples for each task from the

distributions N (0,⇥�1) for each ⇥. Results are averaged across 10 trials.

We demonstrate the e↵ectiveness of the algorithm by measuring the rate of learned

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec

is
io

n

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

Rewiring probability
0.1
0.05
0.02
0.01

(a) Precision for various pmove.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

pr
ec
is
io
n

●

●
●

●●
●●
●●●

●●●
●●●
●●●●
●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●
●●
●●●

●●●
●●
●●●

●●

●

●

Transfer
Bootstrap

(b) Transfer versus standard bootstrap.

Figure 5.4: Precision versus recall of learned di↵erences, on synthetic networks.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 91

edge di↵erences that actually exist in the true networks (precision) against the rate of

true di↵erences that are learned (recall). The results of the experiments are depicted

in Figure 5.3. In all of these plots �2 is varied to produce the various points of

precision/recall. Figure 5.3a shows the precision recall graphs for various training set

sizes with �1 = 0.4. As �2 is increased, the precision increases from around 0.6 at

the rightmost point of each curve (�2 = 0, learning each network independently) to

almost 1 in the left region of the curve corresponding to large amounts of transfer.

While the tradeo↵ between precision and recall for learned di↵erences is mainly

controlled by the �2 parameter, �1 also has an e↵ect on the di↵erences learned because

the sparsity of the networks controls which edges are present in each task. Figure 5.3b

shows the precision/recall tradeo↵ for various values of �1. Lower values of �1 (denser

networks) produce more di↵erences and increase the recall of di↵erences. However,

learning overly dense networks can make it impossible to discern the true di↵erences

from the false ones even with high levels of transfer.

We also vary the rewiring probability when generating the true networks, vary-

ing the number of true di↵erences. Figure 5.4a shows the precision-recall graphs for

di↵erences across di↵erent values of the rewiring probability. As the number of true

di↵erences decreases, it gets harder to identify them and performance decreases, but

increasing the amount of transfer (increasing �2) still leads to higher precision.

We also compare to using bootstrap procedures to identify higher confidence dif-

ferences. For the bootstrap procedure, we generate a bootstrap sample of the data and

train independent graphical models on that data. We repeat this 400 times. Then for

each edge, we calculate the frequency of it appearing in one task but not the other.

This is the bootstrap probability PB(e) that the edge e is di↵erent between tasks.

For a given cut-o↵ probability, c, we consider all edges with probability PB(e) � c as

inferred di↵erences. We then calculate the precision/recall based on the true di↵er-

ences. The bootstrap graphs are generated by varying c from 0 to 1 so that at c = 0

any di↵erence that appeared in any bootstrap is considered a di↵erence, and at c = 1

only di↵erences that appear in all 400 bootstraps are considered di↵erences.

Figure 5.4b shows the comparison between the transfer algorithm and the boot-

Chapter 5. Learning Di↵erences between Network Structures via Transfer 92

strap method when 500 training samples are available for each task. Our transfer

method dominates the precision-recall curve compared to bootstrapping. Bootstrap-

ping does not produce high precision di↵erences, although it gives some exploration

over a limited range of the precision/recall curve. Interestingly, the bootstrapping

method becomes increasingly computationally expensive depending on the degree of

precision (or recall) desired. The highest point in the bootstrap curve shown occurs

when c = 1 and there are ⇠100 di↵erences (⇠30 of them false) that occur in all 400

bootstraps. Therefore, to push the precision ratio higher than 0.7, we would need to

run more bootstrap samples until most of those false di↵erences do not appear in

at least one of the new bootstraps (while hoping that some true di↵erences remain).

Bootstrapping becomes computationally quite expensive.

5.5 Case Studies on Real Data

In this section we present three real case studies where domain experts performed

di↵erential dependency network analysis in a neuroimaging study, an ovarian cancer

study, and a pancreatic cancer study.

5.5.1 Addressing Gaussian Model Mismatch

On both types of real data (plasma protein concentrations and fMRI activity), we find

that the multivariate Gaussian model is highly sensitive to outliers. An extreme value

in as little as a single sample could produce hundreds of weak correlations that are not

identified when that sample is removed from the training data. Comparing networks

with this model-mismatch is near impossible. The problem was detected because the

transfer bias eliminated most of these spurious edges, but left few real di↵erences to

explore. Furthermore, knowing that such a large portion of discovered edges are false

gives us little confidence in any of the learned edges. A straightforward solution to

this problem is to use a rank-statistic to estimate correlations, such as the Kendall’s

tau statistic described earlier (Liu, Han, and Zhang, 2012). With this modification, we

Chapter 5. Learning Di↵erences between Network Structures via Transfer 93

are able to produce meaningful network models for di↵erential dependency analysis.

5.5.2 False Discovery Rate

When applying a machine learning algorithm on real data, we would like to perform

a quantitative evaluation of the results. The quantitative evaluation of the results is

di�cult in real usage scenarios because there is no ground truth to compare against so

true precision and recall can not be calculated. In these cases, a common approach is to

estimate the false discovery rate (FDR) of the algorithm. When the transfer strength

is increased, the objective function guarantees that fewer di↵erences will be learned.

We need to show that as the total number of di↵erences decreases, the remaining

di↵erences contain proportionally more real di↵erences than spurious di↵erences until

there are no spurious di↵erences. False discoveries can be measured by removing the

di↵erences between classes through scrambling of the data. The marginal distribution

of each class will remain the same, but there will be no true di↵erences between the

classes. Any di↵erences identified by the algorithm are therefore false.

We employ two approaches for estimating the false discovery. In the first approach

we take data from one task and randomly partition that data into two synthetic

tasks. These two synthetic tasks of data are created from a single class, and so any

di↵erences learned between them are false di↵erences. To mimic the original data

as much as possible, we create a bootstrap sample from the artificially partitioned

tasks to make task-specific datasets that are the same size as the original dataset.

We perform multiple random partitions and draw bootstrap samples to create several

training datasets from all original classes and take the average number of di↵erences

identified by the algorithm as an estimate of the expected number of false discoveries

made in the original problem.

The second FDR estimation approach is to pool the data from all classes together,

then randomly split the data into synthetic tasks with the same number of instances

per task as the original classes. There should not be any di↵erences between the depen-

dency structures of these newly generated synthetic tasks, so any di↵erence identified

Chapter 5. Learning Di↵erences between Network Structures via Transfer 94

by the algorithm is a false discovery. We perform the splitting procedure multiple

times and take the average number of di↵erences identified by the algorithm as an

estimate of the expected number of false discoveries made on the original problem.

Neither FDR approach is perfect and each has its own set of assumptions. Both

tend to underestimate the true false discovery rate, as tested empirically on synthetic

data. The second approach, in which samples from all classes are mixed together,

produces a distribution of data for each model that should truly be a mixture model

from both classes. Dependencies will be weakened and may be harder to identify in

either artificial task, complicating the false discovery estimation. The first approach

avoids this problem by creating artificial tasks that are assumed to be generated from

an underlying true dependency network, with exactly the same dependencies in all

artificial tasks. However, for each false discovery experiment, we only have data from

a single class and those samples must be bootstrapped up to the sample size of the

original problem. Empirically, the two methods perform similarly. The first method is

used on the fMRI data presented next, and the second method is used on the protein

data.

5.5.3 Accelerated Learning fMRI Study

Functional magnetic resonance imaging (fMRI) measures the activity level in regions

of the brain while a subject is in the scanner. The network of partial correlations

among regions of interest (ROI) in the brain, is called a functional brain network

because it indicates which regions of the brain have activity patterns that appear

to be exchanging information with each other. A common question is whether these

dependencies are di↵erent in subjects under di↵erent conditions.

Using data from the Accelerated Learning fMRI Study, we want to see how brain

regions interact before and after a person learns a new skill (Clark et al., 2012). In

this study, subjects are asked to identify concealed objects in still images taken from

a virtual reality environment. Initially, all subjects are considered Novice, that is they

are not significantly better than random at identifying images with concealed objects.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 95

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

Lambda_2 (transfer)

Fa
ls

e
D

is
co

ve
ry

 R
at

e

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

o
o
o
o

Lambda_1 (sparsity)
0.2
0.3
0.4
0.5

(a) False discovery rate versus transfer

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

2 5 10 20 50 100 200 500 1000

0.
4

0.
6

0.
8

1.
0

Number of Learned Differences (logscale)

1
−

FD
R

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●●

o
o
o
o

Lambda_1 (sparsity)
0.2
0.3
0.4
0.5

(b) False discovery rate versus number of di↵er-
ences

Figure 5.5: Accelerated learning fMRI study false discovery rate.

fMRI data are collected from these subjects while performing this identification task.

Then, subjects are trained until they reach a level of Intermediate (midway between

chance and perfect) competency. At this point, fMRI data are again collected while

performing the identification task. In total, we have data from 12 subjects at the

Novice stage and 4 at the Intermediate stage. For each subject, there are 1056 samples

of brain activity from 116 regions of interest (ROIs) in the brain. The ROIs are defined

by the AAL atlas (Tzourio-Mazoyer et al., 2002). Our goal is to identify dependencies

among the ROIs that are di↵erent in the Intermediate stage from the Novice stage.

Looking at the networks (rather than the activity levels of individual ROIs) shows us

which ROIs are most critical for performing a cognitive task (Clark et al., 2012).

Our false discovery experiments with fMRI data show that without transfer, there

are always di↵erences learned between the stages. As the transfer strength is increased,

these known false di↵erences disappear quickly. We compare this behavior against

what happens when we perform similar bootstrap sampling from the two classes of

data that we would like to compare. We see that many more di↵erences are learned

and these di↵erences do not disappear so quickly as the transfer strength is increased.

Figure 5.5a illustrates this phenomenon by showing the ratio of fake di↵erences (those

Chapter 5. Learning Di↵erences between Network Structures via Transfer 96

learned between sets of data from the same population) to the di↵erences learned

between sets of data from the two populations of interest. At the left end of the plot,

when there is no transfer, the number of fake di↵erences learned is about 80% the

number of potentially-real di↵erences between the two classes. As the transfer strength

parameter increases, this percentage drops, indicating that the rate of decrease of the

fake di↵erences is faster than that of the potentially-real di↵erences.

Figure 5.5b shows the tradeo↵ between estimated precision (1-FDR) and the num-

ber of di↵erences found (analogous to the precision recall curves in Figure 5.3). There

are edge di↵erences between Novice and Intermediate that are more resistant to trans-

fer bias than the di↵erences between two sets of samples from the same class. We are

therefore more confident that these Novice vs Intermediate edge di↵erences represent

true di↵erences than those found without transfer. However, we are not sure what

percentage of these edges are expected to be real because our estimate of the false

discovery rate may be low.

Learned Brain Networks

Figure 5.6 shows the networks learned for the two classes of data (Novice and Interme-

diate). Figure 5.6a shows the edges that are learned in Novice but not Intermediate.

Figure 5.6b shows the edges that are learned in Intermediate but not Novice.

In order to gain evidence that we are learning good networks, we look at the

pathways activated by the visual exercise in both stages of learning (Novice and

Intermediate). These results show that for both stages, groups of brain regions are

found that share information, which correlate well with sensory-motor pathways found

in humans (Figure 5.7). This includes the occipito-parietal dorsal visual pathway

that computes the location of objects, the occipito-temporal ventral pathway that

determines the identity of objects, collections of frontal and cingulate regions that

help to make decisions about responses, as well as separate cerebellar and middle

temporal networks, along with other smaller networks of brain regions (Mishkin,

Ungerleider, and Macko, 1983). With learning to identify hidden objects in this task,

Chapter 5. Learning Di↵erences between Network Structures via Transfer 97

(a) Novice but not Intermediate (b) Intermediate but not Novice

Figure 5.6: Di↵erential dependency networks learned from Accelerated Learning fMRI
Study with �1 = 0.5 and �2 = 0.2.

it was found that portions of the ventral pathway increased in strength, suggesting

that learning resulted in greater information flow among regions that specialize in

visual object identification.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 98

Figure 5.7: Network of dependencies shared among Novice and Intermediate stages
of the Accelerated Learning study.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 99

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Lambda_2 (transfer)

Fa
ls

e
D

is
co

ve
ry

 R
at

e

●

●

●

●

●

●

●

●

●

Lambda_1 (sparsity)
0.6
0.7
0.8

(a) False discovery rate versus transfer

1 5 10 50 100 500

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Learned Differences (logscale)

1−
FD

R

●

●

●

●

●

●

●

●

●

Lambda_1 (sparsity)
0.6
0.7
0.8

(b) False discovery rate versus number of di↵er-
ences

Figure 5.8: Ovarian cancer study false discovery rate.

5.5.4 Ovarian Cancer

The ovarian cancer study uses data from a cohort of 247 patients. The study contains

114 patients diagnosed with ovarian cancer, and 133 controls. Each patient had a

blood sample taken prior to the diagnosis, and plasma concentrations of 858 proteins

were measured using SOMAmer technology (Gold et al., 2010). SOMAmer is a mul-

tiplexed method of identifying proteins based on aptamers. Aptamers are specialized

molecules that bind to individual proteins, allowing the concentrations of the bound

proteins to be measured. Yet, due to the specialization of SOMAmer to particular

proteins, it can be expensive to measure many proteins. For research purposes, this

expense is reasonable and so we can learn large networks to better understand the dis-

ease. Another goal is to develop inexpensive, reliable blood tests that can be given to

patients to quickly diagnose disease. Therefore, the dependencies that are associated

with cancer may be used to reduce the number of proteins necessary for diagnosis.

Figure 5.8a plots the false discovery rate (FDR), calculated as described in Sec-

tion 5.5, as a function of the transfer parameter �2 for di↵erent settings of the spar-

sity parameter �1. Looking at �2 = 0, which corresponds to the standard approach of

Chapter 5. Learning Di↵erences between Network Structures via Transfer 100

Figure 5.9: Ovarian cancer di↵erence network with transfer bias. These dependencies
exist in the cancer class but not in the control class.

learning the structures independently and comparing them, we see that the estimated

false discovery rate is almost 0.9; that is, nine out of ten di↵erences found are esti-

mated to be false. This level of false discovery clearly makes impossible any analysis

of the found di↵erences and renders the results pretty much useless.

As the transfer rate is increased, the estimated FDR steadily decreases for all

setting of the sparsity parameter, reaching levels below 0.1 which is very acceptable in

biological applications. As in the synthetic data, this improvement in precision comes

at the cost of lower recall. Analogous to the precision recall curves in Figure 5.3,

Figure 5.8b shows the tradeo↵ between estimated precision (1-FDR) and the number

of di↵erences found. Without transfer (right end of the graph) there are a large number

di↵erences found, but almost 90% of these are false. As the amount of transfer is

increased significantly fewer di↵erences are found, but we have much higher confidence

that the di↵erences that remain are real.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 101

Figure 5.10: Ovarian cancer di↵erence network without transfer bias. These depen-
dencies exist in the cancer class but not in the control class.

Figure 5.9 shows the di↵erential dependency network between the cancer and

control populations for a sparsity setting of �1 = 0.6 and a transfer setting of �2 = 0.6.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 102

Immune Inflammatory Coagulation Proteins involved Endopeptidase
response response and complement in extracellular inhibitor
proteins proteins proteins matrix proteins
a2-Macroglobulin a2-Macroglobulin a2-Macroglobulin TIMP1 SLPI
C2 Ck-b-8-1 C2 TIMP1 TIMP1
C6 GHR C6 URB a2-Macroglobulin
Ck-b-8-1 LBP Factor B a1-Antitrypsin a2-HS-Glycoprotein
Factor B a1-Antitrypsin a1-Anti-trypsi BGH3 a1-Antitrypsin
Properdin TIMP-1 PCI VGEF Kallistatin
GHR CD30 TIMP-1 PCI
LBP VEGF CD30
sL-Selectin a2-HS-Glycoprotein VEGF
a1-Antitrypsin
TIMP-1
VEGF
CA-125

Table 5.1: Proteins associated with ovarian cancer.

Every edge in this network represents a dependency that is present in the cancer

population but not in the control population. For contrast, Figure 5.10 shows the

di↵erential dependency network obtained without transfer (�1 = 0.6, �2 = 0). To

ensure that this network presents relevant biological information, we run a standard

enrichment analysis using DAVID (Huang, Sherman, and Lempicki, 2008) on the

24 proteins that appear in the figure, and asked collaborators that have extensive

expertise in cancer biology to analyze the results. The enrichment analysis shows that

the following functional clusters are significantly enriched. An enriched functional

cluster means that there are significantly more members of that cluster present in

the query list than it would be expected from the random background distribution:

endopeptidase inhibitor, inflammatory response, complement and coagulation and

extracellular matrix (see Table 5.1). Our collaborators, the oncology domain experts,

report:

This is consistent with what is known about the biology of ovarian can-

cer. The body’s reaction to ovarian cancer includes stimulation of both the

adaptive (antibodies, cellular immunity) and innate (complement, inflam-

mation) immune systems. In fact, the new, foreign entity (ovarian cancer)

which stimulates these responses also creates a new milieu in which tumor

Chapter 5. Learning Di↵erences between Network Structures via Transfer 103

mutations are selected for when they help the cancer evade these immune

responses (Wang et al., 2005). Ovarian cancers (as well as many other

cancers) also tend to induce a hypercoagulable state, which involve coag-

ulation and complement proteins. Endopeptidases play essential roles in

hemostatis and signal transduction. Changes in the extracellular matrix

is also a key process as cancer cells escape the primary tumor and metas-

tasize. [. . .] Many of the proteins [in Figure 5.9] have been associated

with cancer in general and with ovarian cancer in particular. For instance

CA125 is a well known and clinically used ovarian cancer marker, SLPI

has been shown to be over-expressed in gastric, lung and ovarian cancers,

accelerating metastasis (Choi et al., 2011),VEGF is involved in the growth

of blood vessels (tumors require heavy vascularization to grow), IGFBP4

has been associated with a number of cancers, including ovarian (Walker

et al., 2007). (Oyen et al., 2013)

5.5.5 Pancreatic Cancer

The pancreatic cancer study uses data from a cohort of 469 patients (239 cases and

230 controls) from two sites. As with the ovarian cancer study, each patient had a

blood sample taken prior to the diagnosis, and plasma concentrations of 858 proteins

were measured from this blood sample using SOMAmer technology.

Figure 5.11a shows the estimated FDR as a function of the transfer parameter

(�2) for various sparsity levels. At �2 = 0 the estimated FDR is lower than in the

ovarian cancer case, probably due to the extra available data, but it is still the case

that at least half of the learned di↵erences are false, making any interpretation of the

di↵erential network problematic. As the transfer parameter is increased, the estimated

false discovery rate quickly drops to zero. Figure 5.11b shows the tradeo↵ between

estimated precision and the number of learned di↵erences. Compared to the ovarian

cancer results in Figure 5.8b, a larger number of di↵erences can be identified at high

estimated precision levels (1-FDR), such as 0.9 and above.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 104

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Lambda_2 (transfer)

Fa
ls

e
D

is
co

ve
ry

 R
at

e

●

●

● ●

●

●

●

●

Lambda_1 (sparsity)
0.6
0.7
0.8

(a) False discovery rate versus transfer

1 5 10 50 100 500

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Learned Differences (logscale)

1−
FD

R

●

●

●●

●

●

●

●

Lambda_1 (sparsity)
0.6
0.7
0.8

(b) False discovery rate versus number of di↵er-
ences learned

Figure 5.11: Pancreatic cancer study false discovery rate.

Figure 5.12 shows the di↵erential dependency network between the cancer and

control populations for the sparsity setting �1 = 0.6 and the transfer setting �2 =

0.6, with the node labels showing the functional descriptions in lieu of the protein

names. Our collaborators, oncology domain experts, provided us with a promising

interpretation of the learned proteins:

The di↵erential dependency network shows proteins that are linked with

the endocrine pancreas (e.g. endosomal insulin protease, insulin sensitiv-

ity regulator, protein regulating secretion of hormones by pancreas) and

with the exocrine pancreas (e.g, HDL, LDL, IDL proteins, bile dependent

digestive enzyme), as well as proteins that are associated with cancer

and cancer related processes (e.g. tumor cell lysis receptor, mesothelial

tumor di↵erentiation antigen, down regulator of p53, endoplasmic retic-

ulum chaperone). An enrichment analysis finds the following processes

to be significantly enriched: extracellular matrix, lipid transport and cell

adhesion. These processes are very relevant to the pancreatic and can-

cer biology. As mentioned above, changes in the extracellular matrix are

involved in cancer cells escaping the primary tumor and metastasizing.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 105

Related to the extracellular matrix, cell adhesion is also a key process

that regulates the migration (spreading) of cancer cells through the body

and the destruction of the histological structure in cancerous tissues (Hi-

rohashi and Kanai, 2005). The lipid transport is related to the exocrine

pancreatic function (Lopez-Candales et al., 1993). (Oyen et al., 2013)

Chapter 5. Learning Di↵erences between Network Structures via Transfer 106

F
ig
u
re

5.
12
:
P
an

cr
ea
ti
c
ca
n
ce
r
d
i↵
er
en
ce

n
et
w
or
k
w
it
h
so
m
e
tr
an

sf
er
.
P
ro
te
in

fa
m
il
ie
s
re
p
or
te
d
ra
th
er

th
an

in
d
iv
id
u
al

p
ro
te
in
s.

T
h
es
e
d
ep

en
d
en
ci
es

ex
is
t
in

th
e
ca
n
ce
r
cl
as
s
b
u
t
n
ot

th
e
co
n
tr
ol

cl
as
s.

Chapter 5. Learning Di↵erences between Network Structures via Transfer 107

5.6 Conclusion

Di↵erential analysis of dependency networks of multivariate data allows domain ex-

perts to uncover and understand the di↵erences between related populations and

the processes that are generating these di↵erences. Such questions arise in many do-

mains including biology, medicine, and neuroscience. This chapter demonstrates that

the traditional approach of learning the dependency networks for each task inde-

pendently and then comparing them is prone to having high false discovery rates.

Controlling the confidence, or precision, of di↵erences is important for scientific data

discovery. Therefore, we have shown that transfer learning algorithms provide this

type of control over the number of di↵erences learned. Previous chapters (and related

papers) demonstrate that learned networks benefit from transfer learning in terms

of probability distribution matching or fit to validation data. This research, further

demonstrates the power of transfer learning for making discoveries not only about

the shared sub-structures of networks, but also the di↵erences.

We demonstrated empirically that this transfer learning approach achieves higher

precision than existing methods for learning di↵erential dependency networks. At the

same time, the presented approach yields better performance than the significantly

more expensive bootstrapping procedures. Through three real case studies, domain

experts used the proposed techniques to uncover compelling evidence of biological

processes involved in cancer and human learning. These case studies provide further

evidence that human control over transfer bias guides solutions towards those of most

interest to the end-user.

108

Chapter 6

Interactive Exploration of

Hyper-Parameters

We have shown that domain knowledge about the strength of transfer shapes the space

of solutions to find models that are of interest to the domain expert. We can give the

domain expert the ability to see how di↵erent choices of algorithm hyper-parameters,

including transfer strength, a↵ect the solution. In order to give the domain expert (or

any end-user) such control, the learning algorithm must be able to receive feedback

from a user and update the solution in realtime. Furthermore, a reasonable mechanism

for providing feedback must exist such that the control given to the user is intuitive

enough to use without being a machine learning expert. This control should also be

simple enough that the algorithm will be able to incorporate such feedback quickly.

To meet these goals, we propose to present a visual display of learned networks and

their di↵erences to the user, along with control knobs to adjust the number of edges

learned in each task and the number of di↵erences learned among pairs of tasks. As

the user provides feedback about whether these numbers should move up or down,

the learning algorithm adjusts its own hyper-paramaters, re-calculates the solution

and presents the resulting visualization of the solution to the user. This approach

gives an interactive visualization of the space of solutions.

Chapter 6. Interactive Exploration of Hyper-Parameters 109

6.1 Motivation

We are interested in identifying patterns of dependency among variables in related

sets of data. Graphical models encode a sparse dependency structure that is easily

visualized to give insight about the relationships among variables in a system. In

particular, we are interested in comparing these dependency structures for multiple

related datasets, for example sub-populations in a study, or di↵erent experimental

conditions. In earlier chapters, this dissertation has shown that multitask graphical

models address this problem (Danaher, Wang, and Witten, 2011; Niculescu-Mizil and

Caruana, 2007). Multiple graphs are learned simultaneously, producing models that

are similar, except where the data strongly supports di↵erences, easing comparison

(see example in Figure 6.1). Hyper-parameters determine how similar the learned

graphs are and how many edges are present in each graph. Typically these hyper-

parameters are determined through trial and error after examining the learned graphs

or through a computationally expensive grid search by optimization with respect to

holdout data (Meinshausen and Bühlmann, 2006; Van Allen and Greiner, 2000). The

choice of which criteria to optimize becomes a model selection problem in itself (see in

particular the discussion section of Van Allen and Greiner (2000)). We propose giving

the user interactive control so that they can explore the space of possible solutions

and more quickly find good values for the hyper-parameters.

Multitask graph structure learning is a promising direction for knowledge discovery

in many scientific domains. However, there remain issues of practical concern; namely,

the exploration of the solution space for di↵erent settings of hyper-parameters. Mul-

titask graph structure learning algorithms typically have two hyper-parameters, one

that a↵ects the number of edges learned (sparsity) and the other that controls the

strength of transfer bias (how similar the graphs will be to each other). Both pa-

rameters are di�cult to tune automatically from the data. Much research has gone

into optimizing the sparsity parameter (Maslov and Sneppen, 2002) without a clear

resolution to the problem.

Solutions to the model selection problem generally fall into two categories. The

Chapter 6. Interactive Exploration of Hyper-Parameters 110

(a) Independently learned graphs

(b) Graphs learned with some transfer

Figure 6.1: Example of a sub-graph learned from neuroimaging data. When the graphs
are learned independently, the connections are di↵erent. However, with even a little bit
of transfer bias encouraging them to be similar, the di↵erences disappear, suggesting
that the likelihood of that di↵erence being real is not very strong.

first is to use some form of complexity penalty, such as an information criterion or

minimum description length. This penalty term is chosen a priori to fit assumptions

about the problem domain and the ideal solution (Van Allen and Greiner, 2000).

The primary problem with this approach is that when there is limited data or the

assumptions are incorrect, the criterion may perform arbitrarily badly in terms of

generalization performance, but it is not always easy to tell if this is the case. The

second solution is to use some form of grid search over the space of parameters. The

Chapter 6. Interactive Exploration of Hyper-Parameters 111

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1

0

1000

2000

3000

transfer

Number edges

sparsity

(a) Number of learned edges

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1

0

500

1000

transfer

Number differences

sparsity

(b) Number of learned di↵erences

Figure 6.2: Accelerated learning study: summary statistics about learned network
models for various values of sparsity and transfer hyper-parameters.

model is then selected by choosing the solution that best fits some choice of opti-

mal performance, most typically a fit to hold-out validation data (Niculescu-Mizil

and Caruana, 2007; Oyen and Lane, 2012). This approach works well for optimizing

generalization performance (Van Allen and Greiner, 2000) but may not fit assump-

tions about the simplicity of the underlying process that generated the data. It also

su↵ers from the problem of reducing the amount of available training data because

some data must be reserved for validation. The reduction of training data means that

the solution will have higher variance than if all of the training data were used. In

practice, the ideal model in a grid search is often chosen because it “looks right”

(Danaher, Wang, and Witten, 2011). Bootstrapping procedures, such as stability se-

lection (Liu, Roeder, and Wasserman, 2010), also fall into this grid-search category.

Any grid search is computationally expensive because the learning algorithm must be

run many times. Bootstrapping methods incur even more computational cost because

the learning algorithm is run over various sample sets. Moreover, learning the best

model requires that the best hyper-parameters are included in the grid search.

To illustrate the problem of grid search, we take a closer look at the Accelerated

Learning fMRI Study from the previous chapter (Section 5.5.3). We assigned the

Chapter 6. Interactive Exploration of Hyper-Parameters 112

0
0.02

0.04
0.06

0.08
0.1

0.5

0.55

0.6

0

100

200

300

400

transfer

Number edges

sparsity

(a) Number of learned edges

0
0.02

0.04
0.06

0.08
0.1

0.5

0.55

0.6

0

50

100

150

transfer

Number differences

sparsity

(b) Number of learned di↵erences

Figure 6.3: Accelerated learning study: summary statistics about learned network
models for a fine grid of values of sparsity and transfer hyper-parameters.

sparsity hyper-parameter to 10 values evenly spaced in the range [0.1, 1] and we

assigned the transfer hyper-parameter to 11 values evenly spaced in the range [0, 1].

All combinations of sparsity and transfer settings were run through the multitask

graphical lasso algorithm. The results from that grid are the solutions that were

displayed to the domain expert in the previous chapter. Here, we take a broader look

at the results from all 110 settings of these parameters. Figure 6.2a summarizes the

number of edges learned in the networks for all of the values in the grid. We can

see from this that if the sparsity setting is too high, then no edges are learned in the

graphs. Yet, if the sparsity parameter is too small, then all variables are dependent on

each other and this gives little new information to the end-user. Figure 6.2b shows the

number of edges that are di↵erent between the two learned networks. We see that for

many settings of transfer and sparsity there are many solutions that are uninteresting

because there are no di↵erences. Another frustration with this grid search is that the

number of edges or di↵erences learned does not change linearly with evenly-spaced

steps in parameter space. Tuning the hyper-parameters over a coarse grid like this

could easily miss the optimal hyper-parameter setting.

After noticing that the most interesting results are located within a narrow range

Chapter 6. Interactive Exploration of Hyper-Parameters 113

of hyper-parameter settings, we can re-run the multitask network learning algorithm

for new values of hyper-parameters. As an example, we “zoom in” on the range

[0.5, 0.6] for the sparsity parameter and the range [0, 0.1] for the transfer parameter.

The algorithm is run with another 100 combinations of values for hyper-parameters

evenly spaced in this new range. Figure 6.3a gives the number of individual edges

learned in each networks while Figure 6.3b displays the number of di↵erences between

the two networks. Here we see that the numbers of edges and di↵erences learned

change smoothly in this local region of hyper-parameter space. However, run such a

fine grid over the entire range of possible values would be prohibitively expensive.

Therefore, the typical workflow is to first run a coarse grid over the entire space of

hyper-parameter values. Then, upon inspection of the results, a finer grid is run over

a range of values that promise the most interesting solutions.

In some applications, if there is a robustly optimal setting of the hyper-parameters,

then it may be possible to find it faster via interactive exploration than through

naive exhaustive grid search. On the other hand, there may not be a single best

solution, particularly given limited data and the goal of scientific discovery of patterns.

The goal, then, is not so much to find the single best solution, but to provide all

meaningful solutions to the user. In this case, grid search is e↵ective at producing

many solutions. However, a grid that is evenly spaced in hyper-parameter space often

produces uneven exploration of the solution space. In practice the hyper-parameter

grid search is performed iteratively: results are visually inspected, then several new

hyper-parameter values in areas of interest are applied, and the cycle is repeated until

the results explore the space of solutions of interest. However, the user will most likely

want to see solutions from a narrow range of parameter values that are di�cult to

guess a priori as would be necessary for naive (non-interactive) grid search. Interaction

provides a means to e�ciently explore the space of solutions.

We want to provide an interactive exploration of learned graphical models. Our

goal is to incorporate this into an interactive visualization system, pictured in Fig-

ure 6.4. A single setting of the hyper-parameters does not give the full picture that

domain scientists may want to see. Therefore, we propose a graphical structure learn-

Chapter 6. Interactive Exploration of Hyper-Parameters 114

Figure 6.4: Interactive multi-graph visualization. Our system consists of the follow-
ing components: a visual display of multiple learned graphs, user controls to in-
crease/decrease the number of edges in each graph, user controls to increase/decrease
the degree of similarity among pairs of graphs, e�cient update of learned graphs in
response to user controls.

ing algorithm that allows the user to interactively adjust the number of edges and the

number of di↵erences learned between graphs. As the user makes selections about in-

creasing/decreasing the number of edges or the number of di↵erences between graphs,

we estimate the necessary change in the hyper-parameter values and re-learn the net-

works, displaying the results and allowing further interaction. This approach gives

the user an exploration of the solution space directly, rather than having to guess

pairs of values for hyper-parameters. Essentially, we are giving the user the ability to

explore fine-grained steps in the solution space, and making the appropriate steps in

the hyper-parameters to achieve that result, rather than using a typical grid search

in hyper-parameter space.

Chapter 6. Interactive Exploration of Hyper-Parameters 115

6.2 Current Approach and Related Work

To interactively explore graphical models, we need to provide a means to adjust

parameters of interest to the user and display the resulting graphs. Display of the

graphs is handled through the Cytoscape software that is popular in bioinformatics.

The plugin interface allows us to customize the display for comparison of multiple

graphs (see Figure 6.4). We have also incorporated sliders that allow a user to modify

the sparsity and degree of transfer among networks. Originally, these sliders simply

looked up the pre-computed graphs learned from a list of parameter values. The

user did not have any control over the granularity of the slider, and furthermore,

changing a parameter value may not always have the desired e↵ect (for example, on

sparse graphs, even a small amount of transfer will cause the graphs to be identical).

Therefore, we propose to provide more intuitive controls to the user, allowing them

to change the number of edges or the number of similarities directly. This requires an

algorithm to estimate the necessary change in the hyper-parameter values that will

e↵ect the result requested.

The idea of interactive parameter search is inspired by work in supervised learn-

ing models that show that with human interaction, the optimal parameter settings

are found faster (Amershi et al., 2011) and gives the user control over the objective

function (Kapoor et al., 2012). To achieve this interactive exploration in multitask

graph structure learning, we must be able to estimate the values of hyper-parameters

that will produce the desired change in the solution space. We achieve this by cal-

culating the gradient of the solution with respect to the hyper-parameters and then

taking a step in the direction of the gradient to produce a new solution that meets

the requirements of the user.

Graph structure learning is an unsupervised learning domain and so there may

not be an optimal parameter setting. In Meinshausen and Bühlmann (2006) they

show that even the oracle value of hyper-parameters does not guarantee optimal

performance, instead they recommend using known non-interactions to gauge the

optimal level of sparsity. Selecting the ideal setting of transfer parameters has received

Chapter 6. Interactive Exploration of Hyper-Parameters 116

less attention, with cross-validation being the preferred method (Niculescu-Mizil and

Caruana, 2007; Oyen and Lane, 2012) and subjective human-selection being another

choice (Danaher, Wang, and Witten, 2011). Yet, as argued in the previous chapter,

distribution matching is not always the primary goal for using transfer learning, and

therefore cross-validation will not give optimal results. Giving the user the ability

to explore the solution space is even more important in unsupervised learning. The

user may have desires about learned models that are not expressible until the learned

models are seen (Chang et al., 2009). Furthermore, allowing a user to give feedback

about the solutions is more intuitive than asking the user to adjust hyper-parameters

in the hopes that the adjustments will have the desired e↵ect.

6.3 Updating Learned Graphs with User Feedback

Similarly to all problems considered in this dissertation, we have several sets of data,

Dk for k 2 {1, 2, . . . , K}, for which we will learn several graphs G = {G1, . . . , GK}.
The multitask structure learning algorithm relies on two hyper-parameters, which we

call ⇤ = [�1,�2], where generally 0 < �1  1 controls the sparsity and 0  �2  1

controls the strength of transfer. Unique to this chapter, therefore, we treat the graph

structures G and ⇤ as unknowns to be learned. For a fixed ⇤, the graphs can be learned

from the data as already shown. The user will interactively learn ⇤ by giving feedback

to the learning algorithm about the number of edges and edge similarities that they

would like to see in the learned graphs.

A graph, Gk, is a compact representation of a joint distribution, with a set of

vertices V and a set of edges E. In this chapter, we represent the set of edges in

all of the K graphs with E, an |E| ⇥ K binary matrix. Each entry Eik represents

the presence or absence of the edge i in task k. The structure of the learned graphs

depends on the training data and the hyper-parameters ⇤ = [�1,�2]. While looking at

a given solution, a human end-user may desire to see a solution with more (or fewer)

edges in some Gk or with more (or fewer) edge di↵erences between some Gi and Gj

for tasks i and j. These desires are encoded in binary matrices S = {S1, . . . , SK} that

Chapter 6. Interactive Exploration of Hyper-Parameters 117

correspond to the graphs G (explained in further detail later).

6.3.1 Sketch of Interactive Approach

Our interactive approach, therefore, alternates between learning the graph structure

E = f(D,⇤) and learning the hyper-parameters ⇤ = g(D,G,S) based on feedback S
from a human who is looking at a visualization of the learned graphs G. To initialize

the interaction, we learn a set of graphs from given datasets. These graphs can be

learned independently (�2 = 0) initially with an arbitrary value for the sparsity (e.g.

�1 = 0.5). These graphs will be displayed in Cytoscape, along with information in

the Control Panel about the number of edges learned in each graph and the number

of di↵erences in edges among the tasks. The user can then adjust the desired number

of edges learned (up or down) or adjust the number of di↵erences among pairs of

tasks. Based on the user input, S, we compute the necessary ⇤ to achieve the change

requested (details in the next section). Using the computed ⇤, we re-learn the graphs,

G, and update the visualization, allowing the user to further interact until satisfied

with the solution.

6.3.2 Representation of User Feedback

When a user clicks to change the number of edges in a graph or the number of

di↵erences among graphs, the user is not directly changing the hyper-parameters.

The number of edges in each graph and the amount of similarity can be a↵ected by

both hyper-parameters, so we must estimate an appropriate change in the hyper-

parameters to produce the desired outcome. To represent user preferences, we use a

binary matrix, S, the same size as E (|E| ⇥ K). Each entry, Sik, indicates the user’s

desire to see the presence or absence of edge i in task k. Through this representation,

we can move the learned structures E in the direction of the user preferences S by

finding an appropriate adjustment to ⇤.

An example will help illustrate how the user representation works. Consider the

example where a user wishes to see fewer di↵erences between tasks a and b. Let the

Chapter 6. Interactive Exploration of Hyper-Parameters 118

currently existing set of edges in graph a be A and the set of edges currently existing

in graph b be B. Then the user feedback defines a set U of edges, any one of which

could change to satisfy the user. If the user wishes to see fewer edges that exist in a

but not b then the set di↵erence A \ B must get smaller. Therefore U = A \ B. We

set Sea = 0 8e 2 U and Seb = 1 8e 2 U . S encodes the user-preferences to see one of

the specific edges to be added or removed. The remaining entries in S are set to the

current values of E, i.e. Sek = Eek 8e /2 U and 8k.

Formally, the rules for representing user feedback depends on the action taken by

the user. The rules are defined as follows:

• Fewer edges in task i:

Assign Sei = 0 8 e 2 E.

Assign Sek = Gek 8 e 2 E and 8 k 6= i.

• More edges in task i:

Assign Sei = 1 8 e 2 E.

Assign Sek = Gek 8 e 2 E and 8 k 6= i.

• Fewer edges in task i that are not in task j:

Define set U = {e 2 E
�� Gei = 1 ^ Gej = 0}.

Assign Sei = 0 8 e 2 U .

Assign Sei = Gei 8 e 2 {E \ U}.
Assign Sek = Gek 8 e 2 E and 8 k 6= i.

• More edges in task i that are not in task j:

Define set U = {e 2 E
�� Gei = 0 ^ Gej = 0}.

Assign Sei = 1 8 e 2 U .

Assign Sei = Gei 8 e 2 {E \ U}.
Assign Sek = Gek 8 e 2 E and 8 k 6= i.

Chapter 6. Interactive Exploration of Hyper-Parameters 119

6.3.3 Local Move Toward User Desires

The goal is to obtain a setting for ⇤ = [�1,�2] that creates graphs that are nearly the

same as the current solution, but one edge closer to the user’s desires S. Therefore,

we define an objective function that measures the squared error between S and E.

g(⇤) =
KX

k=1

X

e2E
(Sek � Gek(⇤))

2 (6.1)

The user’s feedback asks us to take just one step in the direction of this objective (only

one edge is added or deleted at a time). We are not fully optimizing the objective.

The gradient is given in Eq 6.2.

r⇤g = �2
KX

k=1

X

e2E
(Sek � Gek(⇤)) · r⇤Gek(⇤)

= �2 · J⇤(~G) · (~S � ~G)

(6.2)

where ~S and ~G are vectors formed by stacking the columns of the S and G matrices

respectively. J⇤(~G) is the 2 ⇥ | ~G| Jacobian matrix, with each entry in the first row

the partial derivative of Gek with respect to �1 while the second row is with respect

to �2. Our objective is to find the minimum step size ⌘ that gives the incremental

change requested.

⇤new = ⇤ � ⌘ · r⇤g (6.3)

6.3.4 Computational Challenges

The above objective requires two computationally expensive steps. The first is the

calculation of the Jacobian (the gradient r⇤Gek(⇤)). The computational complexity

of this depends on the specific model of multitask graph structure learning used. For

the Bayesian discovery of multitask Bayesian networks format given in this chapter,

the partial derivative with respect to �1 (sparsity) is trivial, but the partial derivative

with respect to �2 (the transfer strength) is computationally equivalent to calculating

the multi-task family scores. Which is to say that it is exponential and could take

minutes (depending on complexity-reducing approximations). However, we note that

Chapter 6. Interactive Exploration of Hyper-Parameters 120

the gradient depends only on the current model and not user feedback. Therefore,

the gradient can be calculated in the background while the user is looking at the

previously learned graphs and making a choice about feedback to give. The user may

never notice the delay.

The other computationally expensive procedure is the inference of G(⇤) for each

task. For the Bayesian discovery of multitask Bayesian networks approach given here,

to update G the graphs must be re-learned (exponential time, or approximated with

MCMC).

6.4 Exploration of Multitask Bayesian Networks

First, we will review the Bayesian discovery of Bayesian networks algorithms, par-

ticularly those with transfer bias from related data. Then we discuss how to cache

intermediate calculations to make updating the transfer bias faster on subsequent cal-

culations. Finally, we show how discrete graphs are obtained from the expectations

on edges.

6.4.1 Preliminaries

Bayesian structure discovery produces a posterior estimate of the likelihood of each

edge in a Bayesian network. For multitask Bayesian networks, there will be a posterior

estimate of the expectation of each edge in each task organized into a matrix W ,

denoted 0  wek  1. An edge is described by an indicator function fi(⇡i) such

that the edge v ! i exists (and fi(⇡i) = 1) i↵ v 2 ⇡i, otherwise fi(⇡i) = 0. The

probability of the edge wek is therefore the expectation of f in task k for that edge.

The expectation is calculated over all orderings, �, of the nodes in the Bayesian

network. For a given ordering, the parents of a node i must precede i in the order.

wek =
X

�
P (�)P (f (k),D|�) (6.4)

Chapter 6. Interactive Exploration of Hyper-Parameters 121

Koivisto and Sood (2004) give a relatively e�cient method for exactly calculating

each we for single-task learning. Their method breaks down into three steps:

1. Calculate the family scores from data. These are called the � functions, �i(⇡i) =

P (⇡i)P (xi|⇡i)fi(⇡i). It is assumed that the computational complexity of each

of these is some function C(m) that depends on the number of samples m. The

maximum number of parents allowed for any node is typically fixed to a small

natural number, r. Therefore, there are O(N r+1) of these functions to calculate

for a total computational complexity of O(N r+1C(M)).

2. Calculate the local contribution of each subset U ✓ V �{i} of potential parents

of i. These are called the ↵ functions, ↵i(U) =
P

⇡i✓U P (⇡i)P (xi|⇡i)fi(⇡i). There

are an exponential number of subsets U , therefore there are an exponential

number of ↵ functions. Using a truncated fast Möbius transform, all of the ↵

functions can be computed in O(N2N) time, assuming that the � functions are

pre-computed and that there is a limit, r, on the maximum size of the parent

sets.

3. Sum over the subset lattice of the various Ui to obtain the sum over orders �.

Although the number of orders is N ! there is no need to enumerate each order

explicitly. The potential parents of each node i depend only on the set of parents

Ui that precede it, not on the ordering of the parents within Ui. Using dynamic

programming, this sum takes time O(N2N).

The total computational complexity for a single task is O(N2N + N r+1C(m)). This

is the exact calculation of the posterior. For large networks, roughly N > 30, the

exponential term is intractable. In these cases, we can use MCMC to approximate

the sum over orders. To limit the computation of the polynomial term, we can choose a

su�ciently small r or further reduce the number of potential families using candidate

parent sets.

Previously, we showed how to replace the single-task prior bias P (⇡i) with a

transfer bias P (⇡(k)
i , ⇡

(j)
i) that share information among tasks k and j. In terms of the

Chapter 6. Interactive Exploration of Hyper-Parameters 122

three-step method of Koivisto and Sood (2004), this means replacing their � functions

with:

�ki(⇡i,�2) =fi(⇡
(k)
i)P (x(k)

i |⇡(k)
i)P (⇡(k)

i , ⇡
(j)
i)

=fi(⇡
(k)
i)P (x(k)

i |⇡(k)
i) ⇥ 1

(K � 1)(4 � �2)|Ui|⇥
2

64
X

j 6=k

X

⇡(j)
i ✓Ui

P (x(j)
i |⇡(j)

i)(1 � �2)
�(⇡(k)

i ,⇡(j)
i)

3

75 .

(6.5)

Under single-task learning, we assume each � function takes time C(m) to compute.

Under transfer learning, there is a now a sum over parent sets for each task, therefore

the computational complexity is O(KN r) for each � function. There are KN · N r

of these functions to calculate. This gives a total computational complexity for all

multitask � functions of O(K2N2r+1).

Once the multitask � functions are calculated, the rest of the posterior estimate

can be calculated using existing algorithms, such as the exact computation (Koivisto

and Sood, 2004; Parviainen and Koivisto, 2009) or MCMC approximations (Niini-

maki, Parviainen, and Koivisto, 2011).

6.4.2 E�cient Computation of Transfer Bias

Unfortunately, this sum can be a rather large polynomial in N . However, we can store

intermediate calculations that will speed up any future calculations with di↵erent

values for �2. We achieve this by noting that the function � can only produce a finite

number of integer values in the range [0, r]. By grouping the parents sets, we can

re-arrange terms to group together the parent sets ⇡
(j)
i that will produce the same

value in the � function.

X

⇡(j)
i ✓Ui

P (x(j)
i |⇡(j)

i)(1 � �2)
�(⇡(k)

i ,⇡(j)
i) =

rX

�=0

X

⇡(j)
i |�(⇡(k)

i ,⇡(j)
i)=�

P (x(j)
i |⇡(j)

i)(1 � �2)
�

=
rX

�=0

(1 � �2)
�

X

⇡(j)
i |�(⇡(k)

i ,⇡(j)
i)=�

P (x(j)
i |⇡(j)

i)

(6.6)

Chapter 6. Interactive Exploration of Hyper-Parameters 123

By separating the sum over individual scores, we can store the sums and re-use

them later if �2 changes. We define the � functions as these sums:

�ki�(⇡i, �) =
X

j 6=k

X

⇡(j)
i |�(⇡(k)

i ,⇡(j)
i)=�

P (x(j)
i |⇡(j)

i) for all ⇡i ✓ V � {i}, � 2 Z, 0  �  r .

(6.7)

With a maximum parent set size r, the maximum value that � can take is r. There-

fore, the number of � functions to be calculated are: KrN r+1, one for every fam-

ily in every task for every value of �. The calculation of all of these � functions is

O(K2rN2r+1C(m)).

We rewrite the � functions using the pre-computed � functions. Notice that the

computational complexity of the � function is now linear in r. This means that the

functions can be computed quickly for various values of �2.

�ki(⇡i,�2) =
fi(⇡

(k)
i)P (x(k)

i |⇡(k)
i)

(K � 1)(4 � �2)|Ui| ·
rX

�=0

(1 � �2)
��ki�(⇡i, �) (6.8)

These � functions are also used in the calculation of the Jacobian.

6.4.3 Thresholding for graphs

The feature probabilities, wek, learned from Equation 6.4 can be organized into square

matrices Wk for each task k representing the directed edges of a network. Figure 6.5

shows an example of these learned feature posterior probabilities.

In order to display graphs to the user (see Figure 6.6), we threshold the wek values,

showing only the edges with likelihoods greater than some cut-o↵ value 0  �1  1.

Clearly, �1 will control the density of edges in the displayed graphs. In this work, we

employ a soft-threshold sigmoid function to define the learned graph:

Gek =
1

1 + exp[��(wek � �1)]
. (6.9)

For su�ciently large values of � > 1 this is equivalent to a hard threshold at �1.

When comparing the similarities and di↵erences among a set of graphs, it is helpful

to be able to control for the number of di↵erences between the graphs. By encouraging

Chapter 6. Interactive Exploration of Hyper-Parameters 124

(a) W (1) (b) W (2)

Figure 6.5: Estimated posterior likelihoods for two tasks with �2 = 0. There are 8
variables, and therefore 8 ⇥ 7 possible directed edges, which we have organized into
a weighted adjacency matrix.

Node 1

Node 2 Node 3

Node 4Node 5

Node 6

Node 7

Node 8

(a) G(1) for �1 = 0.1

Node 1

Node 2 Node 3

Node 4 Node 5 Node 6

Node 7

Node 8

(b) G(1) for �1 = 0.5

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 7

Node 8

(c) G(1) for �1 = 0.8

Node 1

Node 2

Node 3 Node 4Node 5

Node 6

Node 7

Node 8

(d) G(2) for �1 = 0.1

Node 1

Node 2Node 3 Node 4Node 5

Node 6

Node 7

Node 8

(e) G(2) for �1 = 0.5

Node 1

Node 2Node 3 Node 4Node 5

Node 6

Node 7 Node 8

(f) G(2) for �1 = 0.8

Figure 6.6: By thresholding at �1, we obtain graphs G(k) from the weighted adjacency
matrices W (k).

the graphs to be similar, we can reduce the number of spurious di↵erences learned,

and display only di↵erences that are most likely to be real (see Figures 6.7 and 6.8).

The �2 parameter controls the amount of similarity bias.

Chapter 6. Interactive Exploration of Hyper-Parameters 125

(a) W (1) (b) W (2)

Figure 6.7: Estimated posterior likelihoods for two tasks with �2 6= 0. There are 8
variables, and therefore 8 ⇥ 7 possible directed edges, which we have organized into
a weighted adjacency matrix.

Node 1

Node 2

Node 3

Node 4Node 5

Node 6

Node 7 Node 8

(a) G(1) for �1 = 0.1

Node 1

Node 2

Node 3 Node 4 Node 5

Node 6

Node 7

Node 8

(b) G(1) for �1 = 0.5

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Node 7

Node 8

(c) G(1) for �1 = 0.8

Node 1

Node 2 Node 3 Node 4Node 5

Node 6

Node 7

Node 8

(d) G(2) for �1 = 0.1

Node 1

Node 2Node 3 Node 4Node 5

Node 6

Node 7

Node 8

(e) G(2) for �1 = 0.5

Node 1

Node 2Node 3 Node 4Node 5

Node 6

Node 7 Node 8

(f) G(2) for �1 = 0.8

Figure 6.8: By thresholding at �1, we obtain graphs G(k) from the weighted adjacency
matrices W (k) with �2 > 0.

6.5 Numerical Estimation of Hyper-Parameters

Once feedback has been received from the user, the hyper-parameters ⇤(G,S) need

to be updated. This is computationally expensive, and so we lay out a numerical

estimation of ⇤.

Chapter 6. Interactive Exploration of Hyper-Parameters 126

6.5.1 Estimation of ⇤ for Multitask Bayesian Networks

To re-learn graphs after getting feedback from the user, we need to calculate the

Jacobian r⇤Gek(⇤) in Equation 6.2. The partial derivative with respect to �1 is fairly

straightforward.

@

@�1
Gek =

��e��(wek��1)

1 + e��(wek��1)

= ��e��(wek��1)Gek

(6.10)

The partial derivative with respect to �2, on the other hand, is more complicated

to calculate because the family scores within the sums depend on �2. Therefore, the

partial derivative of each of these family scores must be computed, and the sums

re-calculated.
@

@�2
Gek = � �e��(wek(�2)��1)Gek

X

�

X

⇡(k)
e ✓Ue

fe(G
(k))P (x(k)

e |⇡(k)
e)⇥

2

4
X

⇡(j)
e ✓Ue

P (x(j)
e |⇡(j)

e)
��(1 � �2)��1 + |Ui|(1 � �2)�(4 � �2)�1

(4 � �2)2

3

5

= � �e��(wek(�2)��1)Gek

X

�

X

⇡(k)
e ✓Ue

fe(G
(k))P (x(k)

e |⇡(k)
e)⇥

2

4
X

⇡(j)
e ✓Ue

P (x(j)
e |⇡(j)

e)
(1 � �2)�ikj

(4 � �2)2
·
✓ |Ui|
4 � �2

� �ikj

1 � �2

◆3

5

(6.11)

This can be re-written using the pre-computed � functions.

@

@�2
Gek = � �e��(wek(�2)��1)Gek

X

�

X

⇡(k)
e ✓Ue

fe(G
(k))P (x(k)

e |⇡(k)
e)⇥

"
rX

�=0

(1 � �2)�

(4 � �2)2
·
✓ |Ui|
4 � �2

� �

1 � �2

◆
�ke�(⇡

(k)
e , �)

(6.12)

The minimum step size is ⌘ such that ⇤new = ⇤ � ⌘r⇤g gets G(⇤new) one edge

closer to S.

X

e,k

|Sek � Gek(⇤
new)| �

X

e,k

|Sek � Gek(⇤)| = �1 (6.13)

We solve for ⌘ using binary search until the above criteria is met.

Chapter 6. Interactive Exploration of Hyper-Parameters 127

6.6 Discussion

There is strong motivation for creating an interactive human-in-the-loop algorithms

for exploring comparative dependency networks. Here we discuss our initial findings

on benchmark networks, share case studies on real data and then suggest directions

for future work.

6.6.1 Demonstration on Benchmark Networks

We use the benchmark asia network to explore the practicality of this interactive

approach. The asia network contains 8 discrete variables (Lauritzen and Spiegelhalter,

1988). In order to produce multiple networks with some edges di↵erent, we randomly

delete each edge with probability p = 0.1. If an edge is deleted, the conditional

probability table for the child is modified by summing over the removed parent. This

produces a set of networks that are similar to the original asia network but with a

few edges di↵erent.

Using two tasks, and starting with an initial value for ⇤, we learn networks G.

Then simulated feedback responses, S, are given. For each of these feedback matrices,

we track the movement in ⇤ to investigate the e↵ect of S on ⇤. For comparison,

we also perform a grid search by running the multitask network learning algorithm

for combinations of settings of �1 and �2 evenly spaced in the valid range for each

parameter. Figure 6.9 shows results of a grid search for one set of data, with 100

samples drawn from modified asia networks. As expected, neither the number of edges

nor the number of di↵erences learned vary linearly with the input hyper-parameters.

Whereas, by design, the interactive algorithm takes steps evenly in terms of the

number of edges or di↵erences learned.

It is di�cult to ascertain the interestingness of a solution for these benchmark

networks. We have shown that grid search covers objectively uninteresting solutions;

in the form of redundant solutions, overly dense solutions and empty solutions. Yet,

subjective measures of interestingness should be gauged by a human with knowledge

Chapter 6. Interactive Exploration of Hyper-Parameters 128

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

1

0

5

10

15

20

transfersparsity

(a) Number of learned edges

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

1

0

5

10

15

transfersparsity

(b) Number of learned di↵erences

Figure 6.9: Modified asia networks: summary statistics about learned network models
for various values of sparsity and transfer hyper-parameters.

about the domain. These benchmark networks are not from a real domain (or it

is an overly simplistic domain), therefore there is not a practical way to judge the

subjective interestingness of the solutions to an uninteresting benchmark problem.

To analyze the usefulness of the interactive algorithm from the end-user perspective,

we therefore rely on case studies from real data.

6.6.2 Case Studies

Results on both neuroimaging and protein studies were presented to domain scientists

using our interactive comparative network visualization. In both cases, a machine

learning expert initially loaded the result networks into the visualization system and

then manned the controls for adjusting the sparsity and transfer. After a few minutes

of looking through network solutions with various numbers of edges and di↵erences,

the domain experts typically made requests, such as to see “the highest confidence

edges shared by both tasks.” The domain experts were able to take over the controls

themselves and expressed appreciation for being able to visualize so many solutions

quickly.

Chapter 6. Interactive Exploration of Hyper-Parameters 129

Anecdotally, we found that di↵erent domain experts were interested in di↵erent

levels of confidence in edges and di↵erences. For the neuroimaging study, the domain

expert was most interested in extremely high confidence di↵erences, selecting di↵er-

ence networks with only three dependencies in each. On the other hand, the biologists

looking at protein data were interested in di↵erence networks with 100 dependen-

cies. These two anecdotes support the idea that di↵erent users could have di↵erent

inexpressible objective functions in mind. However, we need to have di↵erent domain

experts analyze the same data to see if the various interests are due to the users or if

it is inherent in the data.

Often in machine learning, the goal is to find the single best solution to a problem.

However, while looking through the various solutions produced by di↵erent hyper-

parameter settings, the domain experts did not ask how to select the single best

solution. They fully understand the concept of exploring the precision-recall tradeo↵.

Yet, they did ask whether there is any way to get a confidence interval for the depen-

dencies and di↵erences. Instead of adjusting the number of edges/di↵erences, they

would find it preferable to be able to quantify the confidence of edges/di↵erences.

6.6.3 Future Work

The concept of interactive network comparison is compelling. This chapter provides a

method for creating interactive algorithms. These algorithms remain a computation-

ally challenging problem. The example of Bayesian posterior distributions on multi-

ple Bayesian networks given in this chapter, in particular, do not scale well to large

networks. The scalability problem is endemic to the problem of Bayesian network

learning. Performing updates in real-time for large networks will be computationally

di�cult. We could alleviate this problem through the use of approximate or heuristic

network structure learning. Doing so requires extensive evaluation on the tradeo↵s

between speed and accuracy, and so we leave this for future work.

As seen in the previous chapter, graphical lasso scales to large networks much

better than Bayesian networks. Therefore, we would like to apply the proposed in-

Chapter 6. Interactive Exploration of Hyper-Parameters 130

teractive method to multitask graphical lasso. However, the graphical lasso objective

with respect to �1 and �2 is discontinuous; therefore, the gradient (Equation 6.2) is

undefined at precisely the points that we care about. Currently, we are investigat-

ing numerical approximations to the regularization path or heuristics for finding the

discontinuous “hinge” points quickly. Such algorithms that calculate the regulariza-

tion path for individual networks have been developed (Efron et al., 2004; Schmidt,

Niculescu-Mizil, and Murphy, 2007). However, there is not any such algorithm for

multitask network learning. Multitask learning involves two regularization penalties,

therefore it is a surface of regularization that needs to be computed.

Typical grid search methods are ine�cient and information criteria based tuning

guidelines often are not ideal. Interactive guidance provides fine-grained control over

exploration of the solution space in those areas that are of highest interest to the

user. Other forms of feedback could be incorporated rather than just increasing or

decreasing the number edges and di↵erences. For example, one request from domain

scientists is being able to query a specific edge, and see what the whole network

looks like at the threshold point where that edge appears. A similar query could

be imagined for edge di↵erences. These type of queries should be straightforward to

implement algorithmically. The challenge is in creating a user interface to gather this

type of feedback. Woking closely with domain scientists, we could find other queries

that would make exploring solutions easier for the user.

The interactive approach presented here assumes that a human will guide the

objective function via feedback about the hyper-parameters. However, the idea of

beginning at an initial point in the solution space and exploring solutions by modifying

hyper-parameters could be accomplished without a human. A virtual user that begins

with no transfer and repeatedly requests fewer di↵erences, is essentially an automated

process for exploring the regularization path along the “di↵erences” axis. The result

of such a solution path is a ranking of the strength of the di↵erences found. Therefore,

the updates to the algorithm presented in this chapter could be used as steps in an

automated iterative algorithm, instead of an interactive human-in-the-loop algorithm.

This is an interesting direction to explore, and then to see whether the human users

Chapter 6. Interactive Exploration of Hyper-Parameters 131

or the automated approaches are more e↵ective at finding interesting solutions.

6.7 Conclusions

This chapter presents an interactive system for learning multiple networks, display-

ing them to the user, gathering feedback from the user to interactively adjust the

hyper-parameters of the learning algorithm and explore the space of solutions. This

approach is general enough to apply to various types of transfer structure learning

algorithms. The specific details for estimating hyper-parameters and quickly updating

solutions will be specific to each algorithm. The concept of interactive control over

hyper-parameters is even more broadly applicable to many problems in unsupervised

learning. The goal is to be able to display a solution to the user, and provide a means

for the user to direct exploration of the solution space. Interactive methods like this

have been shown to perform quantifiably better in supervised learning domains. In

unsupervised domains, it may be more di�cult to quantify performance, but this

is precisely why it should be even more beneficial to the user to explore the space

of solutions. Many applications for interactive machine learning are imaginable. In

practice, all machine learning applications involve some form of interaction between

looking at results and adjusting the algorithm to produce better results. Automating

this interactive process allows domain scientists and other end-users to work more

e�ciently to discover patterns in their data.

132

Chapter 7

Conclusions

The comparison of multiple dependency networks is a challenging machine learning

problem with the potential to have impact in diverse scientific domains. To be of prac-

tical use, the domain expert must be able to guide the machine learning objective

toward solutions that provide answers to comparative queries about patterns in the

data. This dissertation provides a general framework for incorporating domain knowl-

edge in multitask network structure learning algorithms. Typically machine learning

algorithms have optimized the fit of learned models to data. Yet, many solutions may

be nearly equivalent in this regard and knowledgeable scientists have questions that

are more specific about the features of the models themselves. In order to explore

these questions, end-users must be able to give feedback to the learning algorithm. A

specific example on real data is given concerning learning high-confidence di↵erences

among learned network models. Finally, a complete system for learning models, dis-

playing solutions, gathering feedback from a user and updating models is provided.

Altogether, this dissertation provides a means to interactively explore and compare

network models learned from multiple related datasets.

7.1 Discussion

Specific contributions of this dissertation to the field of multiple network structure

learning include the incorporation of human knowledge about task relationships. This

Chapter 7. Conclusions 133

human knowledge improves the quality of models learned by the transfer learning

algorithm while shaping the topology of the solution space to facilitate comparisons

among learned network structures. Learning multiple solutions through Bayesian pos-

terior distribution modeling or for various settings of hyper-parameters give domain

experts a comprehensive picture of possible patterns in the data, aiding discovery of

insight into the underlying processes that produced the data. An interactive human-

in-the-loop machine learning algorithm is the culmination of this project; allowing a

human to guide the machine learning objective function while exploring the space of

solutions.

Prior knowledge about task-relatedness improves transfer. Transfer learn-

ing algorithms were created as data-driven methods for improving the robustness of

learned models in the face of limited data. However, common scenarios of multiple

related data sets include tasks that are not all equally related. Often there is domain

knowledge or meta-information about the relationships among tasks. A few examples

of these scenarios exist in the literature, including network structures that change over

time (Husmeier, Dondelinger, and Lèbre, 2010). Structures should only be directly

related to those structures that are adjacent in time. Such straightforward domain

knowledge has not been easy to incorporate into multitask learning algorithms for

networks structure learning. Therefore, the first contribution of this dissertation is to

provide a general framework for incorporating prior knowledge about task-relatedness

in multitask network structure learning algorithms. This framework is a generaliza-

tion of the specific case of standard multitask learning in which all pairs of tasks are

equally related. The framework also generalizes specific cases that already exist in

the literature, particularly for networks that evolve over time.

Using this general framework, we develop a task-relatedness aware multitask

Bayesian network structure learning algorithm. The task-relatedness metric allows

more flexibility in the objective function and empirically, we show that it learns more

accurate network structures than standard multitask structure learning. Furthermore,

on real neuroimaging data, we show that the task-relatedness aware framework learns

Chapter 7. Conclusions 134

models that better fit validation data, even though the true task-relatedness metric

is unknown. In summary, transfer learning can be improved by the use of domain

knowledge about the relative relatedness of pairs of tasks.

The degree of transfer strength, as set by a human, shapes the topology

of the solution space. We give several transfer learning approaches that shape

the topology of the solution space. The first approach is the multitask Bayesian net-

work structure learning algorithm developed under the general task-relatedness aware

multitask (TRAM) framework. The algorithm performed at least as well as the naive

multitask learning algorithm on synthetic data specifically designed to test the accu-

racy of the algorithms. However, what is even more compelling, is the practicality of

using TRAM on real data. In real data, there is no guarantee that the given task-

relatedness metric accurately reflects the true similarity of the generative networks.

Yet, the task-relatedness metric provides guidance to the learning algorithm about

the topology of solutions that are of interest to the end-user. We demonstrated this

phenomenon with neuroimaging data from schizophrenia patients on various types

of medication. In this case, neuroscientists are interested in finding changes in func-

tional brain connectivity due to the mental illness (unmitigated by medication) and

then changes due to specific types of medication. The task-relatedness metric allows

for such comparisons to take place that would not be so straightforward under the

standard multitask learning model or the naive approach of learning each network

independently.

Other methods of determining task-relatedness may better be able to better fit the

data; however, they would not provide information to the domain expert about how

the functional brain network responds to various types of medication. By this example,

we show that the standard data-driven approach of machine learning objectives do

not always capture the pattern discovery objective of the end-user. The objectives of

the end-user can be incorporated into the learning objective of the algorithm through

Bayesian prior distributions or biases. These biases, in conjunction with the standard

fit to data objective, shape the solution space to reflect the query of the end-user

Chapter 7. Conclusions 135

while still finding patterns supported by the data.

Tractable incorporation of prior knowledge in Bayesian posterior distribu-

tion learning. Bayesian posterior distributions over the space of solutions provide

invaluable information about all possible dependencies in the data. Solutions that

give a general sense of all possibilities, rather than just a single optimal solution,

are of particular interest to domain scientists. This dissertation provides a tractable

method for incorporating transfer bias into Bayesian posterior distribution learning

algorithms for Bayesian network structure learning. We show how to use this transfer

bias to learn multiple related Bayesian networks with the assumption that learned

networks should have many edges in common. Empirical results demonstrate that

this transfer bias reduces the posterior likelihood of spurious edges for all tasks. For

the scientific problems considered in this dissertation, this is an important contribu-

tion for learning the full picture of possible solutions, rather than just a single point

solution.

The theorem provided in Chapter 4 for incorporating order-modular structure bias

could also be used by structure learning algorithms with prior knowledge about the

existence of particular structural features. Other algorithms have been proposed for

such purposes that use the slower, less-convergent search procedures over structure

space rather than order space (Grzegorczyk and Husmeier, 2008). The theorem given

here provides a means for incorporating structural knowledge into algorithms that

operate in order space.

Transfer learning produces higher confidence di↵erences than existing ap-

proaches. A common question asked by domain scientists is how dependencies

are di↵erent between related tasks. For example, which protein correlations in pa-

tients’ blood proteins are associated with cancer? Attempts at answering questions

like this have produced various unprincipled ad-hoc approaches in domain literature.

Machine learning approaches have centered on two approaches: discriminative mod-

els and bootstrapping procedures. Discriminative models do not really answer the

Chapter 7. Conclusions 136

question of which dependencies exist in each task, as they do not learn dependencies

that may have actually produced the data. Bootstrapping procedures have serious

computational costs and we show that their ability to produce high-confidence dif-

ferences is limited. Somewhat surprisingly, transfer learning has not been previously

proposed as a solution to this problem, yet we show that existing transfer learning

algorithms perform quite well at producing high-precision di↵erences among learned

networks. The intuition is that by biasing network structures to be similar, only those

di↵erences that are strongly supported by the data will survive.

Furthermore, the level of confidence in learned edges is directly controlled by

the transfer strength parameter. For di↵erent end-users or various data sets being

investigated, the desired number and confidence of these identified di↵erences can

vary. We show that giving the end-user the ability to see which dependencies change

with the transfer strength enables them to make discoveries that are relevant to their

field of research.

User feedback about solutions encoded as a learning objective. Building o↵

of the findings about incorporating domain knowledge and giving control to the user

in exploring solutions, we provide a new machine learning workflow with a human-in-

the-loop. To achieve this workflow, we incorporate domain knowledge into the learning

objective, give the end-user a full picture of possible solutions to their question, and

give the end-user the ability to vary the confidence of learned solutions. This human-

guided process is in contrast to existing machine learning workflows in which there is

no feedback loop. Typically, data and a learning objective is provided to the machine

learning algorithm and a solution (or many solutions) is produced. If the end-user

wants to change the learning objective, in the traditional workflow, then the machine

learning algorithm would need to be re-run. That workflow generally requires that

the domain expert and the machine learning programmer discuss the changes to be

made, a process that could take days or weeks. Automating this feedback loop requires

that the end-user can see solutions, provide feedback, and get updated solutions in

realtime.

Chapter 7. Conclusions 137

Chapter 6 provides a system for collecting and incorporating such feedback from

the end-user. Based on the current network structures learned, a user provides feed-

back about increasing or decreasing the number of edges or di↵erences included in the

solution. This is a relatively intuitive change that a human can suggest, and we show

that it can be represented in a learning objective to be optimized by the machine

learning algorithm.

Interactive system for visualizing results, gathering user feedback and up-

dating solutions. This dissertation provides an interactive multiple network visu-

alization tool. The fully automated tool displays a solution to the multiple network

structure learning algorithm. The visualization of the solution eases comparative ob-

servations of dependency patterns in the data. The end-user can request changes to

the solution, such as increasing or decreasing the number of edges or di↵erences in the

solution. This request is encoded as feedback from the user and incorporated into a

machine learning objective function. Using this feedback, new hyper-parameters are

estimated that produce the results required by the user. These new hyper-parameters

are used in the multitask network structure learning algorithm to update the solution,

producing a result that fits both the data and the user’s desires.

Currently, this general interactive approach has been applied to the problem of

multitask Bayesian network structure learning. These models do not scale well to

large networks. Future plans include applying this general approach for interactively

learning multiple graphical lasso models. These models scale to larger size networks,

however estimating the updated hyper-parameters is computationally challenging and

so this is not a trivial problem to solve.

7.2 Future Work

Transfer learning has been shown empirically to provide higher confidence in learned

edges as well as di↵erence between tasks. However, quantifying the level of this con-

fidence is di�cult because the edges are not independent of each other. Methods

Chapter 7. Conclusions 138

for quantifying confidence generally resort to computationally expensive bootstrap-

ping procedures. Bootstrapping also reduces the amount of training data available

for learning models, thereby reducing the estimation power. Other ways for measur-

ing confidence on the same data that is used to train the data may be possible, but

must be carefully considered in light of the fact that features are not independent of

each other. The calculation of confidence intervals would greatly increase the value

of transfer learning algorithms for practitioners.

As presented in this dissertation, the task-relatedness aware multitask learning

framework assumes that there is some form of prior knowledge that encodes the

relatedness of pairs of tasks. In real data, we have shown that such information

is often available. However, the task-relatedness metric of the framework could be

treated as an unobserved variable to be learned. Such a data-driven approach would

be interesting to see if the learned model will better fit the data, although the learning

procedure will be considerably more expensive. Learning the task-relatedness metric

directly from data could be an interesting solution in itself if it gives domain scientists

insight into the relationships among various sets of data.

This dissertation concentrated on real data in the areas of neuroimaging and

plasma protein analysis. Some issues are common to both of these areas, such as the

non-Gaussian nature of the data, while other issues are unique to each data set. Many

other applications that involve comparisons among dependencies in multivariate data

are possible. Such areas of research include gene expression networks, social influence

networks, infectious disease pathways, and others. Hopefully, the algorithms presented

here can be applied directly to these other applications, but it would be interesting

to explore any issues that are unique to other data sets.

7.3 Closing Statement

Complex data analysis depends not only on the data but also on the question being

asked. This is a fundamental concept in statistical data analysis, yet machine learn-

ing algorithms have tended to focus primarily on fitting the data with little regard to

Chapter 7. Conclusions 139

the question being asked. We show that for learning multiple network structures, the

questions asked by domain scientists are rarely answered su�ciently by presenting

only a single solution based on optimal fit to data. Rather, this dissertation provides

an interactive dialog between the end-user and the machine learning algorithm. Ma-

chine learning ensures that all solutions fit the data well. Meanwhile, the end-user

ensures that solutions reflect answers to questions of comparative analysis among the

learned networks. The methods presented incorporate human desires into machine

learning algorithms for the discovery of similarities and di↵erences in dependency

networks from multiple related data sets.

140

Appendix A

Multitask Bayesian Discovery

Proofs

A.1 Extended proof of Theorem 1

Apply the chain rule and marginalize over graph structure to get Eq 4.6. Then use

the modularity properties on each term in the product.

P (f (1),D|�) =
X

G(1)✓�
f(G(1))P (D(1)|G(1))

X

G(2)✓�
P (D(2)|G(2))P (G(1), G(2)|�)

=
X

⇡(1)
1 ✓U1

· · ·
X

⇡(1)
n ✓Un

nY

i=1

h
fi(⇡

(1)
i)P (x(1)

i |⇡(1)
i)

i
⇥

⇥

2

64
X

⇡(2)
1 ✓U1

· · ·
X

⇡(2)
n ✓Un

nY

i=1

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)

3

75

Appendix A. Multitask Bayesian Discovery Proofs 141

Factor terms in the structure bias as follows.

X

⇡(2)
1 ✓U1

· · ·
X

⇡(2)
n ✓Un

nY

i=1

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui) =

=
X

⇡(2)
1 ✓U1

· · ·
X

⇡(2)
n�1✓Un�1

n�1Y

i=1

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)⇥

⇥
2

4
X

⇡(2)
n ✓Un

P (x(2)
n |⇡(2)

n)P (⇡(1)
n , ⇡(2)

n |Un)

3

5

=

2

64
X

⇡(2)
1 ✓U1

P (x(2)
1 |⇡(2)

1)P (⇡(1)
1 , ⇡

(2)
1 |U1)

3

75 ⇥

⇥

2

64
X

⇡(2)
2 ✓U2

P (x(2)
2 |⇡(2)

2)P (⇡(1)
2 , ⇡

(2)
2 |U2)

3

75 ⇥ · · ·

· · · ⇥
2

4
X

⇡(2)
n ✓Un

P (x(2)
n |⇡(2)

n)P (⇡(1)
n , ⇡(2)

n |Un)

3

5

=
nY

i=1

X

⇡(2)
i ✓Ui

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)

We now have:

P (f (1),D|�) =
X

⇡(1)
1 ✓U1

· · ·
X

⇡(1)
n ✓Un

nY

i=1

fi(⇡
(1)
i)P (x(1)

i |⇡(1)
i)⇥

⇥

2

64
X

⇡(2)
i ✓Ui

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)

3

75

If we perform a similar factoring to that above, we get

P (f (1),D|�) =
nY

i=1

X

⇡(1)
i ✓Ui

fi(⇡
(1)
i)P (x(1)

i |⇡(1)
i)

2

64
X

⇡(2)
i ✓Ui

P (x(2)
i |⇡(2)

i)P (⇡(1)
i , ⇡

(2)
i |Ui)

3

75

Appendix A. Multitask Bayesian Discovery Proofs 142

A.2 Normalization constant for structure bias

Calculation of the normalization constant requires summing over all possible combi-

nations of parent sets (⇡(1)
i , ⇡

(2)
i). We accomplish this by fixing parent set ⇡

(1)
i and

counting how many parent sets ⇡(2)
i will give �ikj = 0 (⇡(2)

i can contain any parents

from the set {Ui \ ⇡
(1)
i } but none from ⇡

(1)
i); then how many ⇡

(2)
i will give �ikj = 1

(⇡(2)
i can contain any parents from the set {Ui \ ⇡(1)

i } and exactly one from ⇡
(1)
i); etc,

up to the maximum of �ikj = |⇡(1)
i |. This sum turns out to be a binomial expansion,

and so we can write it in closed form. Next, we perform a similar expansion of the sum

over parent sets ⇡(1)
i that have size |⇡(1)

i | = 0, and |⇡(1)
i | = 1, etc up to the maximum

|⇡(1)
i | = |Ui|. This sum also turns out to be a binomial expansion and therefore can

be simplified into a closed form.

Z =
X

⇡(1)
i ✓Ui

X

⇡(2)
i ✓Ui

(1 � �)�i12

=
X

⇡(1)
i ✓Ui

2

64
X

{⇡(2)
i ✓Ui

���i12=0}

1 +
X

{⇡(2)
i ✓Ui

���i12=1}

(1 � �) + · · · +
X

{⇡(2)
i ✓Ui

���i12=|⇡(1)
i |}

(1 � �)|⇡
(1)
i |

3

75

=
X

⇡(1)
i ✓Ui

"✓|⇡(1)
i |
0

◆
2|Ui|

2|⇡
(1)
i |

+

✓|⇡(1)
i |
1

◆
2|Ui|(1 � �)

2|⇡
(1)
i |

+ · · · +
✓|⇡(1)

i |
|⇡(1)

i |

◆
2|Ui|(1 � �)|⇡

(1)
i |

2|⇡
(1)
i |

#

=
X

⇡(1)
i ✓Ui

|⇡(1)
i |X

j=0

✓|⇡(1)
i |
j

◆
2|Ui|�|⇡(1)

i |(1 � �)j

=
X

⇡(1)
i ✓Ui

2|Ui|�|⇡(1)
i |

|⇡(1)
i |X

j=0

✓|⇡(1)
i |
j

◆
(1 � �)j

= 2|Ui|
X

⇡(1)
i ✓Ui

2�|⇡(1)
i |(1 + 1 � �)|⇡

(1)
i |

= 2|Ui|
X

⇡(1)
i ✓Ui

✓
2 � �

2

◆|⇡(1)
i |

Appendix A. Multitask Bayesian Discovery Proofs 143

= 2|Ui|
X

⇡(1)
i ✓Ui

✓
1 � �

2

◆|⇡(1)
i |

= 2|Ui|

2

64
X

{⇡(1)
i ✓Ui

��|⇡(1)
i |=0}

1 +
X

{⇡(1)
i ✓Ui

��|⇡(1)
i |=1}

✓
1 � �

2

◆
+ · · · +

X

{⇡(1)
i ✓Ui

��|⇡(1)
i |=|Ui|}

✓
1 � �

2

◆|Ui|
3

75

= 2|Ui|
"✓|Ui|

0

◆
+

✓|Ui|
1

◆ ✓
1 � �

2

◆
+ . . .+

✓|Ui|
|Ui|

◆ ✓
1 � �

2

◆|Ui|
#

= 2|Ui|
|Ui|X

j=0

✓|Ui|
j

◆ ✓
1 � �

2

◆j

= 2|Ui|
✓
2 � �

2

◆|Ui|

= (4 � �)|Ui|

A.3 Integration of Bayesian model average

We integrate over all values of the parameter � to obtain the Bayesian model average

over all possible structure priors, thus eliminating the need to select a point-estimate

for �. We use an uninformative, uniform prior for �, i.e. p(�|Ui) = 1 for 0  �  1.

P (⇡(k)
i , ⇡

(j)
i |Ui) =

Z 1

0

P (⇡(k)
i , ⇡

(j)
i |Ui,�)p(�|Ui)d�

=

Z 1

0

(1 � �)�ikj

(4 � �)|Ui| p(�|Ui)d�

=

Z 1

0

(1 � �)�ikj

(4 � �)|Ui| d�

Next, we use an identity given by Euler in 1748 (Bailey, 1935). If � is the beta

function and 2F1 is the ordinary hypergeometric function, then

Z 1

0

xb�1(1 � x)c�b�1(1 � zx)�adx = �(b, c � b)2F1(a, b; c; z) for <(c) > <(b) > 0

Let x = �, a = |Ui|, b = 1, c = �ikj + 2, and z = 1/4. Then the condition,

Appendix A. Multitask Bayesian Discovery Proofs 144

�ikj + 2 > 1 > 0, holds for any �ikj � 0 which is the valid range for �ikj and:

Z 1

0

�0(1 � �)�ikj(1 � �/4)�|Ui|d� = �(1,�ikj + 1)2F1(|Ui|, 1;�ikj + 2; 1/4)

Z 1

0

4|Ui|(1 � �)�ikj

(4 � �)|Ui| d� =

✓
0!�ikj!

(�ikj + 1)!

◆
2F1(|Ui|, 1;�ikj + 2; 1/4)

Z 1

0

(1 � �)�ikj

(4 � �)|Ui| d� =

✓
1

4|Ui|(�ikj + 1)

◆
2F1(|Ui|, 1;�ikj + 2; 1/4)

giving the result:

P (⇡(k)
i , ⇡

(j)
i |Ui) =

2F1(|Ui|, 1;�ikj + 2; 1/4)

4|Ui|(�ikj + 1)

We only need the solution to this formula for a limited number of combinations of

integer values of �ikj and |Ui|, 0  �ikj  |Ui| < n, where n is the number of

variables in the network. Therefore we pre-compute a lookup table of the necessary

values using the GNU Scientific Library hypergeometric function solver.

145

References

Abu-Mostafa, Y. 1995. Hints. Neural Computation 7:639–671.

Akaike, H. 1973. Information theory and an extension of the maximum likelihood

principle. Second International Symposium on Information Theory 2:267–281.

Amershi, S.; Fogarty, J.; Kapoor, A.; and Tan, D. 2010. Examining multiple potential

models in end-user interactive concept learning. In Twenty-Eighth International

Conference on Human Factors in Computing Systems, 1357–1360.

Amershi, S.; Fogarty, J.; Kapoor, A.; and Tan, D. 2011. E↵ective end-user interaction

with machine learning. In Twenty-Fifth AAAI Conference on Artificial Intelligence.

Bailey, W. N. 1935. Generalised Hypergeometric Series. Cambridge, England: Uni-

versity Press.

Bakker, B., and Heskes, T. 2003. Task clustering and gating for Bayesian multitask

learning. Journal of Machine Learning Research 4:83–99.

Banerjee, O.; El Ghaoui, L.; and d’Aspremont, A. 2008. Model selection through

sparse maximum likelihood estimation for multivariate Gaussian or binary data.

The Journal of Machine Learning Research 9:485–516.

Baxter, J. 1997. A Bayesian / information theoretic model of learning to learn via

multiple task sampling. Machine Learning 28(1):7–39.

Baxter, J. 2000. A model of inductive bias learning. Journal of Artificial Intelligence

Research 12:149–198.

REFERENCES 146

Beinlich, I. A.; Suermondt, H. J.; Chavez, R. M.; and Cooper, G. F. 1989. The

ALARM monitoring system: A case study with two probabilistic inference tech-

niques for belief networks. In Second European Conference on Artificial Intelligence

in Medicine, volume 38, 247–256.

Bekkerman, R.; Raghavan, H.; Allan, J.; and Eguchi, K. 2007. Interactive clustering

of text collections according to a user-specified criterion. In International Joint

Conference on Artificial Intelligence, volume 20, 684–689.

Bergmann, S.; Ihmels, J.; and Barkai, N. 2004. Similarities and di↵erences in genome-

wide expression data of six organisms. PLoS Biology 2(1):e9.

Bhattacharya, I.; Godbole, S.; Joshi, S.; and Verma, A. 2009. Cross-guided clustering:

Transfer of relevant supervision across domains for improved clustering. In Ninth

IEEE International Conference on Data Mining, 41–50.

Buntine, W. 1991. Theory refinement on Bayesian networks. In Seventh Conference

on Uncertainty in Artificial Intelligence, 52–60.

Burge, J., and Lane, T. 2005. Learning class-discriminative dynamic Bayesian net-

works. In Twenty-Second International Conference on Machine Learning, 97–104.

Caruana, R. 1997. Multitask learning. Machine Learning 28(1):41–75.

Chang, J.; Boyd-Graber, J.; Gerrish, S.; Wang, C.; and Blei, D. 2009. Reading

tea leaves: How humans interpret topic models. In Neural Information Processing

Systems.

Chen, T.; Yan, J.; Xue, G.; and Chen, Z. 2010. Transfer learning for behavioral

targeting. In Nineteenth International Conference on World Wide Web, 1077–1078.

Chiquet, J.; Grandvalet, Y.; and Ambroise, C. 2011. Inferring multiple graphical

structures. Statistics and Computing 21(4):537–553.

Choi, B.-D.; Jeong, S.-J.; Wang, G.; Park, J.-J.; Lim, D.-S.; Kim, B.-H.; Cho, Y.-

I.; Kim, C.-S.; Jeong, M.-J.; et al. 2011. Secretory leukocyte protease inhibitor is

REFERENCES 147

associated with MMP-2 and MMP-9 to promote migration and invasion in SNU638

gastric cancer cells. International Journal of Molecular Medicine 28(4):527.

Clark, V. P.; Co↵man, B. A.; Mayer, A. R.; Weisend, M. P.; Lane, T. D. R.; Calhoun,

V. D.; Raybourn, E. M.; Garcia, C. M.; and Wassermann, E. M. 2012. TDCS

guided using fMRI significantly accelerates learning to identify concealed objects.

NeuroImage 59(1):117–128.

Cohn, D.; Caruana, R.; and McCallum, A. 2003. Semi-supervsied clustering with

user feedback. Constrained Clustering: Advances in Algorithms, Theory, and Ap-

plications 4(1):17–32.

Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996. Active learning with statistical

models. Journal of Artificial Intelligence Research 4:129–145.

Cooper, G. F., and Herskovits, E. 1992. A Bayesian method for the induction of

probabilistic networks from data. Machine Learning 9:309–347.

Cooper, G., and Yoo, C. 1999. Causal discovery from a mixture of experimental

and observational data. In Conference on Uncertainty in Artificial Intelligence,

116–125.

Danaher, P.; Wang, P.; and Witten, D. 2011. The joint graphical lasso for inverse

covariance estimation across multiple classes. arXiv stat.ME 1111(00324v1).

Dasgupta, S., and Ng, V. 2009. Single data, multiple clusterings. In Neural In-

formation Processing Systems Workshop on Clustering: Science or Art? Towards

Principled Approaches.

Dempster, A. P. 1972. Covariance selection. Biometrics 157–175.

desJardins, M.; MacGlashan, J.; and Ferraioli, J. 2007. Interactive visual clustering.

In Twelfth International Conference on Intelligent User Interfaces, 361–364.

Dondelinger, F.; Lèbre, S.; and Husmeier, D. 2010. Heterogeneous continuous dy-

namic Bayesian networks with flexible structure and inter-time segment information

sharing. In Twenty-Seventh International Conference on Machine Learning.

REFERENCES 148

Dredze, M.; Kulesza, A.; and Crammer, K. 2010. Multi-domain learning by

confidence-weighted parameter combination. Machine Learning 79(1-2):123–149.

Dubey, A.; Bhattacharya, I.; and Godbole, S. 2010. A cluster-level semi-supervision

model for interactive clustering. Machine Learning and Knowledge Discovery in

Databases 409–424.

Dy, J., and Brodley, C. 2000. Visualization and interactive feature selection for

unsupervised data. In Sixth International Conference on Knowledge Discovery and

Data Mining, 360–364.

Eaton, E.; desJardins, M.; and Lane, T. 2008. Modeling transfer relationships between

learning tasks for improved inductive transfer. In European Conference on Machine

Learning and Knowledge Discovery in Databases, 317–332.

Eaton, E.; Holness, G.; and McFarlane, D. 2010. Interactive learning using manifold

geometry. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 437–443.

Efron, B.; Hastie, T.; Johnstone, I.; and Tibshirani, R. 2004. Least angle regression.

The Annals of Statistics 32(2):407–499.

Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. In Society

for Industrial and Applied Mathematics.

Epshteyn, A., and DeJong, G. 2006. Generative prior knowledge for discriminative

classification. Journal of Artificial Intelligence Research 27(1):25–53.

Fails, J., and Olsen Jr, D. 2003. Interactive machine learning. In Eighth International

Conference on Intelligent User Interfaces, 39–45.

Fawcett, T. 2004. ROC graphs: Notes and practical considerations for researchers.

Machine Learning 31:1–38.

Fogarty, J.; Tan, D.; Kapoor, A.; and Winder, S. 2008. CueFlik: Interactive concept

learning in image search. In Computer Human Interface Conference on Human

Factors in Computing Systems, 29–38.

REFERENCES 149

Friedman, N., and Koller, D. 2003. Being Bayesian about network structure: A

Bayesian approach to structure discovery in Bayesian networks. Machine Learning

50(1):95–125.

Friedman, N., and Yakhini, Z. 1996. On the sample complexity of learning Bayesian

networks. In Twelfth Conference on Uncertainty in Artificial Intelligence, 274–282.

Friedman, J.; Hastie, T.; and Tibshirani, R. 2008. Sparse inverse covariance estimation

with the graphical lasso. Biostatistics 9(3):432–441.

Friedman, N.; Nachman, I.; and Peér, D. 1999. Learning Bayesian network structure

from massive datasets: the sparse candidate algorithm. In Fifteenth Conference on

Uncertainty in Artificial Intelligence, 206–215.

Friston, K. J.; Holmes, A. P.; Worsley, K. J.; Poline, J.-P.; Frith, C. D.; and Frack-

owiak, R. S. 1994. Statistical parametric maps in functional imaging: a general

linear approach. Human Brain Mapping 2(4):189–210.

Friston, K. J.; Harrison, L.; and Penny, W. 2003. Dynamic causal modelling. Neu-

roImage 19(4):1273–1302.

Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E. N.; Carter, J.; Dalby,

A. B.; Eaton, B. E.; Fitzwater, T.; et al. 2010. Aptamer-based multiplexed pro-

teomic technology for biomarker discovery. PloS ONE 5(12):e15004.

Grzegorczyk, M., and Husmeier, D. 2008. Improving the structure MCMC sampler

for Bayesian networks by introducing a new edge reversal move. Machine Learning

71(2-3):265–305.

Gu, Q., and Zhou, J. 2009. Learning the shared subspace for multi-task clustering

and transductive transfer classification. In Ninth IEEE International Conference

on Data Mining, ICDM ’09, 159–168.

Guo, J.; Levina, E.; Michailidis, G.; and Zhu, J. 2011. Joint estimation of multiple

graphical models. Biometrika 98(1):1.

REFERENCES 150

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995. Learning Bayesian networks:

The combination of knowledge and statistical data. Machine Learning 20(3):197–

243.

Hirohashi, S., and Kanai, Y. 2005. Cell adhesion system and human cancer morpho-

genesis. Cancer Science 94(7):575–581.

Honorio, J., and Samaras, D. 2010. Multi-task learning of Gaussian graphical models.

In Twenty-Seventh International Conference on Machine Learning.

Huang, D. W.; Sherman, B. T.; and Lempicki, R. A. 2008. Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols

4(1):44–57.

Husmeier, D.; Dondelinger, F.; and Lèbre, S. 2010. Inter-time segment information

sharing for non-homogeneous dynamic Bayesian networks. In Advances in Neural

Information Processing Systems 23, 901–909.

Jbabdi, S.; Woolrich, M.; and Behrens, T. 2009. Multiple-subjects connectivity-

based parcellation using hierarchical dirichlet process mixture models. NeuroImage

44(2):373 – 384.

Kapoor, A.; Lee, B.; Tan, D.; and Horvitz, E. 2012. Performance and preferences:

Interactive refinement of machine learning procedures. In Twenty-Sixth AAAI Con-

ference on Artificial Intelligence.

Kindermann, R., and Snell, J. L. 1980. Markov Random Fields and Their Applica-

tions, volume 1 of Contemporary Mathematics. Providence, Rhode Island: American

Mathematical Society.

Koivisto, M., and Sood, K. 2004. Exact Bayesian structure discovery in Bayesian

networks. Journal of Machine Learning Research 5:549–573.

Koivisto, M. 2006. Advances in exact Bayesian structure discovery in Bayesian

networks. In Twenty-Second Conference Annual Conference on Uncertainty in

Artificial Intelligence, 241–248.

REFERENCES 151

Koller, D., and Friedman, N. 2009. Probabilistic graphical models: principles and

techniques. Adaptive Computation and Machine Learning. MIT Press.

Lancaster, J. L.; Woldor↵, M. G.; Parsons, L. M.; Liotti, M.; Freitas, C. S.; Rainey,

L.; Kochunov, P. V.; Nickerson, D.; Mikiten, S. A.; and Fox, P. T. 2000. Auto-

mated Talairach atlas labels for functional brain mapping. Human Brain Mapping

10(3):120–131.

Larochelle, H.; Erhan, D.; and Bengio, Y. 2008. Zero-data learning of new tasks. In

Twenty-Third National Conference on Artificial Intelligence, 646–651.

Lauritzen, S., and Spiegelhalter, D. 1988. Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal

Statistical Society. Series B (Methodological) 157–224.

Liu, Y.; Niculescu-Mizil, A.; Lozano, A.; and Lu, Y. 2010. Temporal graphical

models for cross-species gene regulatory network discovery. In Life Sciences Society

Computational Systems Bioinformatics Conference, volume 9, 70–81.

Liu, H.; Han, F.; and Zhang, C.-H. 2012. Transelliptical graphical models. In Advances

in Neural Information Processing Systems 25. 809–817.

Liu, H.; Roeder, K.; and Wasserman, L. 2010. Stability approach to regularization

selection (stars) for high dimensional graphical models. In Neural Information

Processing Systems.

Lopez-Candales, A.; Bosner, M. S.; Spilburg, C. A.; and Lange, L. G. 1993. Choles-

terol transport function of pancreatic cholesterol esterase: directed sterol uptake

and esterification in enterocytes. Biochemistry 32(45):12085–12089.

Luis, R.; Sucar, L. E.; and Morales, E. F. 2009. Inductive transfer for learning

Bayesian networks. Machine Learning 79(1-2):227–255.

Madigan, D.; York, J.; and Allard, D. 1995. Bayesian graphical models for discrete

data. International Statistical Review 215–232.

REFERENCES 152

Maslov, S., and Sneppen, K. 2002. Specificity and stability in topology of protein

networks. Science 296(5569):910.

Meinshausen, N., and Bühlmann, P. 2006. High-dimensional graphs and variable

selection with the lasso. The Annals of Statistics 34(3):1436–1462.

Miller, G. 1995. WordNet: a lexical database for English. Communications of the

ACM 38(11):39–41.

Mishkin, M.; Ungerleider, L. G.; and Macko, K. A. 1983. Object vision and spatial

vision: two cortical pathways. Trends in Neurosciences 6:414–417.

Mohan, K.; Chung, M.; Han, S.; Witten, D.; Lee, S.-I.; and Fazel, M. 2012. Struc-

tured learning of Gaussian graphical models. In Advances in Neural Information

Processing Systems 25. 629–637.

Murphy, K. P. 2001. Active learning of causal Bayes net structure. Technical report.

Neumann, J.; Fox, P. T.; Turner, R.; and Lohmann, G. 2010. Learning par-

tially directed functional networks from meta-analysis imaging data. NeuroImage

49(2):1372–1384.

Niculescu-Mizil, A., and Caruana, R. 2007. Inductive transfer for Bayesian network

structure learning. In Eleventh International Conference on Artificial Intelligence

and Statistics.

Niinimaki, T.; Parviainen, P.; and Koivisto, M. 2011. Partial order MCMC for

structure discovery in Bayesian networks. In Twenty-Seventh Annual Conference

on Uncertainty in Artificial Intelligence, 557–564.

Oyen, D., and Lane, T. 2012. Leveraging domain knowledge in multitask Bayesian

network structure learning. In Twenty-Sixth AAAI Conference on Artificial Intel-

ligence.

Oyen, D.; Niculescu-Mizil, A.; Ostro↵, R.; Stewart, A.; and Clark, V. P. 2013. Con-

trolling the precision-recall tradeo↵ in di↵erential dependency network analysis.

ArXiv.

REFERENCES 153

Palatucci, M.; Pomerleau, D.; Hinton, G.; and Mitchell, T. 2009. Zero-shot learning

with semantic output codes. In Neural Information Processing Systems (NIPS),

1410–1418.

Pan, S. J., and Yang, Q. 2010. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering 22(10):1345–1359.

Parviainen, P., and Koivisto, M. 2009. Exact structure discovery in Bayesian net-

works with less space. In Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, 436–443.

Pearl, J., and Bareinboim, E. 2011. Transportability of causal and statistical relations:

A formal approach. In Twenty-Fifth National Conference on Artificial Intelligence,

247—254.

Roy, S.; Werner-Washburne, M.; and Lane, T. 2011. A multiple network learn-

ing approach to capture system-wide condition-specific responses. Bioinformatics

27(13):1832–1838.

Sarty, G. E. 2007. Computing Brain Activity Maps from fMRI Time-Series Images.

Cambridge University Press.

Schmidt, M.; Niculescu-Mizil, A.; and Murphy, K. 2007. Learning graphical model

structure using l1-regularization paths. In National Conference On Artificial Intel-

ligence, volume 22, 1278. AAAI Press.

Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics

6:461–464.

Settles, B. 2009. Active learning literature survey. Computer Sciences Technical

Report 1648, University of Wisconsin–Madison.

Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.;

Nichols, T. E.; Ramsey, J. D.; and Woolrich, M. W. 2011. Network modelling

methods for fMRI. NeuroImage 54(2):875–891.

REFERENCES 154

Steele, E., and Tucker, A. 2009. Selecting and weighting data for building consensus

gene regulatory networks. In Advances in Intelligent Data Analysis VIII. 190–201.

Talbot, J.; Lee, B.; Kapoor, A.; and Tan, D. S. 2009. EnsembleMatrix: Interactive

visualization to support machine learning with multiple classifiers. In Twenty-

Seventh International Conference on Human Factors in Computing Systems, 1283–

1292.

Thrun, S., and O’Sullivan, J. 1996. Discovering structure in multiple learning tasks:

The TC algorithm. In International Conference on Machine Learning, 489–497.

Thrun, S. 1996. Is learning the n-th thing any easier than learning the first? Advances

in Neural Information Processing Systems 640–646.

Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B (Methodological) 267–288.

Tong, S., and Koller, D. 2001. Active learning for structure in Bayesian networks. In

International Joint Conference on Artificial Intelligence, volume 17, 863–869.

Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Del-

croix, N.; Mazoyer, B.; and Joliot, M. 2002. Automated anatomical labeling of

activations in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. NeuroImage 15(1):273–289.

Van Allen, T., and Greiner, R. 2000. Model selection criteria for learning belief nets:

An empirical comparison. In Seventeenth International Conference on Machine

Learning, 1047–1054.

Varoquaux, G.; Gramfort, A.; Poline, J. B.; and Thirion, B. 2010. Brain covariance

selection: Better individual functional connectivity models using population prior.

In Advances in Neural Information Processing Systems.

Walker, G.; MacLeod, K.; Williams, A. R.; Cameron, D. A.; Smyth, J. F.; and Lang-

don, S. P. 2007. Insulin-like growth factor binding proteins IGFBP3, IGFBP4, and

REFERENCES 155

IGFBP5 predict endocrine responsiveness in patients with ovarian cancer. Clinical

Cancer Research 13(5):1438–1444.

Wang, X.; Wang, E.; Kavanagh, J. J.; and Freedman, R. S. 2005. Ovarian cancer, the

coagulation pathway, and inflammation. Journal of Translational Medicine 3(1):25.

Ware, M.; Frank, E.; Holmes, G.; Hall, M.; andWitten, I. H. 2001. Interactive machine

learning: letting users build classifiers. International Journal of Human-Computer

Studies 55(3):281–292.

Wasserman, L., and Roeder, K. 2009. High dimensional variable selection. Annals of

Statistics 37(5A):2178.

Werhli, A., and Husmeier, D. 2007. Reconstructing gene regulatory networks with

Bayesian networks by combining expression data with multiple sources of prior

knowledge. Statistical Applications in Genetics and Molecular Biology 6(1).

Widmer, C.; Leiva, J.; Altun, Y.; and Rätsch, G. 2010. Leveraging sequence classifica-

tion by taxonomy-based multitask learning. Research in Computational Molecular

Biology 6044:522–534.

Yu, S.; Tresp, V.; and Yu, K. 2007. Robust multi-task learning with t-processes. In

Twenty-Fourth International Conference on Machine Learning, 1103–1110.

Yuan, M., and Lin, Y. 2007. Model selection and estimation in the Gaussian graphical

model. Biometrika 94(1):19–35.

Zhang, J., and Zhang, C. 2010. Multitask Bregman clustering. In Twenty-Fourth

National Conference on Artificial Intelligence.

Zhang, B.; Li, H.; Riggins, R.; Zhan, M.; Xuan, J.; Zhang, Z.; Ho↵man, E.; Clarke, R.;

and Wang, Y. 2009. Di↵erential dependency network analysis to identify condition-

specific topological changes in biological networks. Bioinformatics 25(4):526–532.

Zheng, V. W.; Pan, S. J.; Yang, Q.; and Pan, J. J. 2008. Transferring multi-device

localization models using latent multi-task learning. In Twenty-Third National

Conference on Artificial Intelligence.

	University of New Mexico
	UNM Digital Repository
	7-1-2013

	Interactive Exploration of Multitask Dependency Networks
	Diane Oyen
	Recommended Citation

	tmp.1469198166.pdf.uxRdP

