4,130 research outputs found

    Outsourcing labour to the cloud

    Get PDF
    Various forms of open sourcing to the online population are establishing themselves as cheap, effective methods of getting work done. These have revolutionised the traditional methods for innovation and have contributed to the enrichment of the concept of 'open innovation'. To date, the literature concerning this emerging topic has been spread across a diverse number of media, disciplines and academic journals. This paper attempts for the first time to survey the emerging phenomenon of open outsourcing of work to the internet using 'cloud computing'. The paper describes the volunteer origins and recent commercialisation of this business service. It then surveys the current platforms, applications and academic literature. Based on this, a generic classification for crowdsourcing tasks and a number of performance metrics are proposed. After discussing strengths and limitations, the paper concludes with an agenda for academic research in this new area

    A survey of the use of crowdsourcing in software engineering

    Get PDF
    The term 'crowdsourcing' was initially introduced in 2006 to describe an emerging distributed problem-solving model by online workers. Since then it has been widely studied and practiced to support software engineering. In this paper we provide a comprehensive survey of the use of crowdsourcing in software engineering, seeking to cover all literature on this topic. We first review the definitions of crowdsourcing and derive our definition of Crowdsourcing Software Engineering together with its taxonomy. Then we summarise industrial crowdsourcing practice in software engineering and corresponding case studies. We further analyse the software engineering domains, tasks and applications for crowdsourcing and the platforms and stakeholders involved in realising Crowdsourced Software Engineering solutions. We conclude by exposing trends, open issues and opportunities for future research on Crowdsourced Software Engineering

    Holistic recommender systems for software engineering

    Get PDF
    The knowledge possessed by developers is often not sufficient to overcome a programming problem. Short of talking to teammates, when available, developers often gather additional knowledge from development artifacts (e.g., project documentation), as well as online resources. The web has become an essential component in the modern developer’s daily life, providing a plethora of information from sources like forums, tutorials, Q&A websites, API documentation, and even video tutorials. Recommender Systems for Software Engineering (RSSE) provide developers with assistance to navigate the information space, automatically suggest useful items, and reduce the time required to locate the needed information. Current RSSEs consider development artifacts as containers of homogeneous information in form of pure text. However, text is a means to represent heterogeneous information provided by, for example, natural language, source code, interchange formats (e.g., XML, JSON), and stack traces. Interpreting the information from a pure textual point of view misses the intrinsic heterogeneity of the artifacts, thus leading to a reductionist approach. We propose the concept of Holistic Recommender Systems for Software Engineering (H-RSSE), i.e., RSSEs that go beyond the textual interpretation of the information contained in development artifacts. Our thesis is that modeling and aggregating information in a holistic fashion enables novel and advanced analyses of development artifacts. To validate our thesis we developed a framework to extract, model and analyze information contained in development artifacts in a reusable meta- information model. We show how RSSEs benefit from a meta-information model, since it enables customized and novel analyses built on top of our framework. The information can be thus reinterpreted from an holistic point of view, preserving its multi-dimensionality, and opening the path towards the concept of holistic recommender systems for software engineering
    • 

    corecore