1,401 research outputs found

    A survey of symbiotic radio: Methodologies, applications, and future directions

    Get PDF
    The sixth generation (6G) wireless technology aims to achieve global connectivity with environmentally sustainable networks to improve the overall quality of life. The driving force behind these networks is the rapid evolution of the Internet of Things (IoT), which has led to a proliferation of wireless applications across various domains through the massive deployment of IoT devices. The major challenge is to support these devices with limited radio spectrum and energy-efficient communication. Symbiotic radio (SRad) technology is a promising solution that enables cooperative resource-sharing among radio systems through symbiotic relationships. By fostering mutualistic and competitive resource sharing, SRad technology enables the achievement of both common and individual objectives among the different systems. It is a cutting-edge approach that allows for the creation of new paradigms and efficient resource sharing and management. In this article, we present a detailed survey of SRad with the goal of offering valuable insights for future research and applications. To achieve this, we delve into the fundamental concepts of SRad technology, including radio symbiosis and its symbiotic relationships for coexistence and resource sharing among radio systems. We then review the state-of-the-art methodologies in-depth and introduce potential applications. Finally, we identify and discuss the open challenges and future research directions in this field

    Machine Learning-Enabled Resource Allocation for Underlay Cognitive Radio Networks

    Get PDF
    Due to the rapid growth of new wireless communication services and applications, much attention has been directed to frequency spectrum resources and the way they are regulated. Considering that the radio spectrum is a natural limited resource, supporting the ever increasing demands for higher capacity and higher data rates for diverse sets of users, services and applications is a challenging task which requires innovative technologies capable of providing new ways of efficiently exploiting the available radio spectrum. Consequently, dynamic spectrum access (DSA) has been proposed as a replacement for static spectrum allocation policies. The DSA is implemented in three modes including interweave, overlay and underlay mode [1]. The key enabling technology for DSA is cognitive radio (CR), which is among the core prominent technologies for the next generation of wireless communication systems. Unlike conventional radio which is restricted to only operate in designated spectrum bands, a CR has the capability to operate in different spectrum bands owing to its ability in sensing, understanding its wireless environment, learning from past experiences and proactively changing the transmission parameters as needed. These features for CR are provided by an intelligent software package called the cognitive engine (CE). In general, the CE manages radio resources to accomplish cognitive functionalities and allocates and adapts the radio resources to optimize the performance of the network. Cognitive functionality of the CE can be achieved by leveraging machine learning techniques. Therefore, this thesis explores the application of two machine learning techniques in enabling the cognition capability of CE. The two considered machine learning techniques are neural network-based supervised learning and reinforcement learning. Specifically, this thesis develops resource allocation algorithms that leverage the use of machine learning techniques to find the solution to the resource allocation problem for heterogeneous underlay cognitive radio networks (CRNs). The proposed algorithms are evaluated under extensive simulation runs. The first resource allocation algorithm uses a neural network-based learning paradigm to present a fully autonomous and distributed underlay DSA scheme where each CR operates based on predicting its transmission effect on a primary network (PN). The scheme is based on a CE with an artificial neural network that predicts the adaptive modulation and coding configuration for the primary link nearest to a transmitting CR, without exchanging information between primary and secondary networks. By managing the effect of the secondary network (SN) on the primary network, the presented technique maintains the relative average throughput change in the primary network within a prescribed maximum value, while also finding transmit settings for the CRs that result in throughput as large as allowed by the primary network interference limit. The second resource allocation algorithm uses reinforcement learning and aims at distributively maximizing the average quality of experience (QoE) across transmission of CRs with different types of traffic while satisfying a primary network interference constraint. To best satisfy the QoE requirements of the delay-sensitive type of traffics, a cross-layer resource allocation algorithm is derived and its performance is compared against a physical-layer algorithm in terms of meeting end-to-end traffic delay constraints. Moreover, to accelerate the learning performance of the presented algorithms, the idea of transfer learning is integrated. The philosophy behind transfer learning is to allow well-established and expert cognitive agents (i.e. base stations or mobile stations in the context of wireless communications) to teach newly activated and naive agents. Exchange of learned information is used to improve the learning performance of a distributed CR network. This thesis further identifies the best practices to transfer knowledge between CRs so as to reduce the communication overhead. The investigations in this thesis propose a novel technique which is able to accurately predict the modulation scheme and channel coding rate used in a primary link without the need to exchange information between the two networks (e.g. access to feedback channels), while succeeding in the main goal of determining the transmit power of the CRs such that the interference they create remains below the maximum threshold that the primary network can sustain with minimal effect on the average throughput. The investigations in this thesis also provide a physical-layer as well as a cross-layer machine learning-based algorithms to address the challenge of resource allocation in underlay cognitive radio networks, resulting in better learning performance and reduced communication overhead

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    Internet of Things for Sustainable Community Development: Introduction and Overview

    Get PDF
    The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development

    Prediction And Allocation Of Live To Virtual Communication Bridging Resources

    Get PDF
    This document summarizes a research effort focused on improving live-to-virtual (L-V) communication systems. The purpose of this work is to address a significant challenge facing the tactical communications training community through the development of the Live-to-Virtual Relay Radio Prediction Algorithm and implementation of the algorithm into an Integrated Live-to-Virtual Communications Server prototype device. The motivation for the work and the challenges of integrating live and virtual communications are presented. Details surrounding the formulation of the prediction algorithm and a description of the prototype system, hardware, and software architectures are shared. Experimental results from discrete event simulation analysis and prototype functionality testing accompany recommendations for future investigation. If the methods and technologies summarized are implemented, an estimated equipment savings of 25%-53% and an estimated cost savings of 150,000.00150,000.00 - 630,000.00 per site are anticipated. Thus, a solution to a critical tactical communications training problem is presented through the research discussed
    corecore