35 research outputs found

    Connected Filtering on Tree-Based Shape-Spaces

    Get PDF
    International audienceConnected filters are well-known for their good contour preservation property. A popular implementation strategy relies on tree-based image representations: for example, one can compute an attribute characterizing the connected component represented by each node of the tree and keep only the nodes for which the attribute is sufficiently high. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is performed not in the space of the image, but in the space of shapes built from the image. Such a processing of shape-space filtering is a generalization of the existing tree-based connected operators. Indeed, the framework includes the classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on non-increasing attributes. Finally, we also propose a new class of connected operators that we call morphological shapings. Some illustrations and quantitative evaluations demonstrate the usefulness and robustness of the proposed shape-space filters

    Morphological Filtering in Shape Spaces: Applications using Tree-Based Image Representations

    Full text link
    Connected operators are filtering tools that act by merging elementary regions of an image. A popular strategy is based on tree-based image representations: for example, one can compute an attribute on each node of the tree and keep only the nodes for which the attribute is sufficiently strong. This operation can be seen as a thresholding of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisfied with a mere thresholding, we propose to expand on this idea, and to apply connected filters on this latest graph. Consequently, the filtering is done not in the space of the image, but on the space of shapes build from the image. Such a processing is a generalization of the existing tree-based connected operators. Indeed, the framework includes classical existing connected operators by attributes. It also allows us to propose a class of novel connected operators from the leveling family, based on shape attributes. Finally, we also propose a novel class of self-dual connected operators that we call morphological shapings.Comment: 4 pages, will appear in 21st International Conference on Pattern Recognition (ICPR 2012

    RESIDUAL APPROACH ON A HIERARCHICAL SEGMENTATION

    No full text
    International audienceResidual operators analyze the evolution of an image subject to the application of a series of transformations, for example a series of openings of increasing size. When a significant object is filtered out by a transformation corresponding to its size, an important residue is observed. Maximal residues are kept for each pixel, indicating the most significant objects present in the image. Different families of operators have been used in the literature: morphological openings or clos-ings, attribute openings or openings by reconstruction. In this paper we propose to compute residues on a hierarchy of parti-tions, computing the differences between regions at different hierarchical levels based on the classical earth mover's dis-tance. The advantage of our approach is that it is autodual and generic as it can be applied with any hierarchical approach

    Generalized Flooding and Multicue PDE-Based Image Segmentation

    Full text link

    Vector ordering and multispectral morphological image processing

    No full text
    International audienceThis chapter illustrates the suitability of recent multivariate ordering approaches to morphological analysis of colour and multispectral images working on their vector representation. On the one hand, supervised ordering renders machine learning no-tions and image processing techniques, through a learning stage to provide a total ordering in the colour/multispectral vector space. On the other hand, anomaly-based ordering, automatically detects spectral diversity over a majority background, al-lowing an adaptive processing of salient parts of a colour/multispectral image. These two multivariate ordering paradigms allow the definition of morphological operators for multivariate images, from algebraic dilation and erosion to more advanced techniques as morphological simplification, decomposition and segmentation. A number of applications are reviewed and implementation issues are discussed in detail

    Random projection depth for multivariate mathematical morphology

    No full text
    International audienceThe open problem of the generalization of mathematical morphology to vector images is handled in this paper using the paradigm of depth functions. Statistical depth functions provide from the "deepest" point a "center-outward ordering" of a multidimensional data distribution and they can be therefore used to construct morphological operators. The fundamental assumption of this data-driven approach is the existence of "background/foreground" image representation. Examples in real color and hyperspectral images illustrate the results

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Toxicity Assays in Nanodrops Combining Bioassay and Morphometric Endpoints

    Get PDF
    BACKGROUND: Improved chemical hazard management such as REACH policy objective as well as drug ADMETOX prediction, while limiting the extent of animal testing, requires the development of increasingly high throughput as well as highly pertinent in vitro toxicity assays. METHODOLOGY: This report describes a new in vitro method for toxicity testing, combining cell-based assays in nanodrop Cell-on-Chip format with the use of a genetically engineered stress sensitive hepatic cell line. We tested the behavior of a stress inducible fluorescent HepG2 model in which Heat Shock Protein promoters controlled Enhanced-Green Fluorescent Protein expression upon exposure to Cadmium Chloride (CdCl(2)), Sodium Arsenate (NaAsO(2)) and Paraquat. In agreement with previous studies based on a micro-well format, we could observe a chemical-specific response, identified through differences in dynamics and amplitude. We especially determined IC50 values for CdCl(2) and NaAsO(2), in agreement with published data. Individual cell identification via image-based screening allowed us to perform multiparametric analyses. CONCLUSIONS: Using pre/sub lethal cell stress instead of cell mortality, we highlighted the high significance and the superior sensitivity of both stress promoter activation reporting and cell morphology parameters in measuring the cell response to a toxicant. These results demonstrate the first generation of high-throughput and high-content assays, capable of assessing chemical hazards in vitro within the REACH policy framework
    corecore