30,545 research outputs found

    Level-Based Analysis of the Univariate Marginal Distribution Algorithm

    Get PDF
    Estimation of Distribution Algorithms (EDAs) are stochastic heuristics that search for optimal solutions by learning and sampling from probabilistic models. Despite their popularity in real-world applications, there is little rigorous understanding of their performance. Even for the Univariate Marginal Distribution Algorithm (UMDA) -- a simple population-based EDA assuming independence between decision variables -- the optimisation time on the linear problem OneMax was until recently undetermined. The incomplete theoretical understanding of EDAs is mainly due to lack of appropriate analytical tools. We show that the recently developed level-based theorem for non-elitist populations combined with anti-concentration results yield upper bounds on the expected optimisation time of the UMDA. This approach results in the bound O(nλlogλ+n2)\mathcal{O}(n\lambda\log \lambda+n^2) on two problems, LeadingOnes and BinVal, for population sizes λ>μ=Ω(logn)\lambda>\mu=\Omega(\log n), where μ\mu and λ\lambda are parameters of the algorithm. We also prove that the UMDA with population sizes μO(n)Ω(logn)\mu\in \mathcal{O}(\sqrt{n}) \cap \Omega(\log n) optimises OneMax in expected time O(λn)\mathcal{O}(\lambda n), and for larger population sizes μ=Ω(nlogn)\mu=\Omega(\sqrt{n}\log n), in expected time O(λn)\mathcal{O}(\lambda\sqrt{n}). The facility and generality of our arguments suggest that this is a promising approach to derive bounds on the expected optimisation time of EDAs.Comment: To appear in Algorithmica Journa

    Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

    Get PDF
    Unlike traditional evolutionary algorithms which produce offspring via genetic operators, Estimation of Distribution Algorithms (EDAs) sample solutions from probabilistic models which are learned from selected individuals. It is hoped that EDAs may improve optimisation performance on epistatic fitness landscapes by learning variable interactions. However, hardly any rigorous results are available to support claims about the performance of EDAs, even for fitness functions without epistasis. The expected runtime of the Univariate Marginal Distribution Algorithm (UMDA) on OneMax was recently shown to be in O(nλlogλ)\mathcal{O}\left(n\lambda\log \lambda\right) by Dang and Lehre (GECCO 2015). Later, Krejca and Witt (FOGA 2017) proved the lower bound Ω(λn+nlogn)\Omega\left(\lambda\sqrt{n}+n\log n\right) via an involved drift analysis. We prove a O(nλ)\mathcal{O}\left(n\lambda\right) bound, given some restrictions on the population size. This implies the tight bound Θ(nlogn)\Theta\left(n\log n\right) when λ=O(logn)\lambda=\mathcal{O}\left(\log n\right), matching the runtime of classical EAs. Our analysis uses the level-based theorem and anti-concentration properties of the Poisson-Binomial distribution. We expect that these generic methods will facilitate further analysis of EDAs.Comment: 19 pages, 1 figur

    Level-Based Analysis of the Population-Based Incremental Learning Algorithm

    Get PDF
    The Population-Based Incremental Learning (PBIL) algorithm uses a convex combination of the current model and the empirical model to construct the next model, which is then sampled to generate offspring. The Univariate Marginal Distribution Algorithm (UMDA) is a special case of the PBIL, where the current model is ignored. Dang and Lehre (GECCO 2015) showed that UMDA can optimise LeadingOnes efficiently. The question still remained open if the PBIL performs equally well. Here, by applying the level-based theorem in addition to Dvoretzky--Kiefer--Wolfowitz inequality, we show that the PBIL optimises function LeadingOnes in expected time O(nλlogλ+n2)\mathcal{O}(n\lambda \log \lambda + n^2) for a population size λ=Ω(logn)\lambda = \Omega(\log n), which matches the bound of the UMDA. Finally, we show that the result carries over to BinVal, giving the fist runtime result for the PBIL on the BinVal problem.Comment: To appea
    corecore