3 research outputs found

    A Formal Separation Between Strategic and Nonstrategic Behavior

    Full text link
    It is common in multiagent systems to make a distinction between "strategic" behavior and other forms of intentional but "nonstrategic" behavior: typically, that strategic agents model other agents while nonstrategic agents do not. However, a crisp boundary between these concepts has proven elusive. This problem is pervasive throughout the game theoretic literature on bounded rationality and particularly critical in parts of the behavioral game theory literature that make an explicit distinction between the behavior of "nonstrategic" level-0 agents and "strategic" higher-level agents (e.g., the level-k and cognitive hierarchy models). Overall, work discussing bounded rationality rarely gives clear guidance on how the rationality of nonstrategic agents must be bounded, instead typically just singling out specific decision rules and informally asserting them to be nonstrategic (e.g., truthfully revealing private information; randomizing uniformly). In this work, we propose a new, formal characterization of nonstrategic behavior. Our main contribution is to show that it satisfies two properties: (1) it is general enough to capture all purportedly "nonstrategic" decision rules of which we are aware in the behavioral game theory literature; (2) behavior that obeys our characterization is distinct from strategic behavior in a precise sense

    Bounded rationality for relaxing best response and mutual consistency: The Quantal Hierarchy model of decision-making

    Full text link
    While game theory has been transformative for decision-making, the assumptions made can be overly restrictive in certain instances. In this work, we focus on some of the assumptions underlying rationality such as mutual consistency and best response, and consider ways to relax these assumptions using concepts from level-kk reasoning and quantal response equilibrium (QRE) respectively. Specifically, we provide an information-theoretic two-parameter model that can relax both mutual consistency and best response, but can recover approximations of level-kk, QRE, or typical Nash equilibrium behaviour in the limiting cases. The proposed Quantal Hierarchy model is based on a recursive form of the variational free energy principle, representing self-referential games as (pseudo) sequential decisions. Bounds in player processing abilities are captured as information costs, where future chains of reasoning are discounted, implying a hierarchy of players where lower-level players have fewer processing resources. We demonstrate the applicability of the proposed model to several canonical economic games.Comment: 36 pages, 15 figure

    Level-0 Models for Predicting Human Behavior in Games

    No full text
    corecore